首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cyclic poly‐2‐ethyl‐2‐oxazoline (PEOXA) ligands for superparamagnetic Fe3O4 nanoparticles (NPs) generate ultra‐dense and highly compact shells, providing enhanced colloidal stability and bio‐inertness in physiological media. When linear brush shells fail in providing colloidal stabilization to NPs, the cyclic ones assure long lasting dispersions. While the thermally induced dehydration of linear PEOXA shells cause irreversible aggregation of the NPs, the collapse and subsequent rehydration of similarly grafted cyclic brushes allow the full recovery of individually dispersed NPs. Although linear ligands are densely grafted onto Fe3O4 cores, a small plasma protein such as bovine serum albumin (BSA) still physisorbs within their shells. In contrast, the impenetrable entropic shield provided by cyclic brushes efficiently prevents nonspecific interaction with proteins.  相似文献   

2.
Janus nanoparticles (JNPs) offer unique features, including the precisely controlled distribution of compositions, surface charges, dipole moments, modular and combined functionalities, which enable excellent applications that are unavailable to their symmetrical counterparts. Assemblies of NPs exhibit coupled optical, electronic and magnetic properties that are different from single NPs. Herein, we report a new class of double‐layered plasmonic–magnetic vesicle assembled from Janus amphiphilic Au‐Fe3O4 NPs grafted with polymer brushes of different hydrophilicity on Au and Fe3O4 surfaces separately. Like liposomes, the vesicle shell is composed of two layers of Au‐Fe3O4 NPs in opposite direction, and the orientation of Au or Fe3O4 in the shell can be well controlled by exploiting the amphiphilic property of the two types of polymers.  相似文献   

3.
A facile strategy is reported for the fabrication of Pt‐loaded core–shell nanocomposite ellipsoids (Fe2O3‐Pt@DSL) consisting of ellipsoidal Fe2O3 cores, double‐layered La2O3 shells and deposited Pt nanoparticles (NPs). The formation of the doubled‐shelled structure uses Fe2O3‐Pt@mSiO2 as template sacrificial agent and it involves the re‐deposition of silica and self‐assembly of metal oxide units. The preparation methods of double‐shelled metal oxides avoid repeated coating and etching and could be utilized to fabricate other shaped double‐shelled composites. Characterization results indicated that the Fe2O3‐Pt@DSL nanocomposites possessed mesoporous structure and tunable shell thickness. Moreover, due to the formation of Fe2O3 and La2O3 composites, Pt NPs can also be stabilized via deposition on chemically active oxides with a synergistic effect. Therefore, as a catalyst for the reduction of 4‐nitrophenol, Fe2O3‐Pt@DSL showed superior catalytic activity and reusability due to structural superiority and enhanced composite synergy. Finally, well‐dispersed Pt NPs were encapsulated into the void between the shell layers to construct the Fe2O3‐Pt@DSL‐Pt catalyst.  相似文献   

4.
We demonstrate the guiding principles behind simple two dimensional self‐assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3O4) NCs into a uniform two‐dimensional bi‐layered superstructure. This self‐assembly process can be controlled by the energy of ligand–ligand interactions between surface ligands on Fe3O4 NCs and Zr6O4(OH)4(fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy‐dispersive X‐ray spectroscopy and TEM tomography confirm the hierarchical co‐assembly of Fe3O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First‐principles calculations and event‐driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand–surface and ligand–ligand interactions. This study opens a new avenue for design and self‐assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self‐assembly process, which could be a guide for designing functional materials with desired structure.  相似文献   

5.
Janus nanoparticles (JNPs) offer unique features, including the precisely controlled distribution of compositions, surface charges, dipole moments, modular and combined functionalities, which enable excellent applications that are unavailable to their symmetrical counterparts. Assemblies of NPs exhibit coupled optical, electronic and magnetic properties that are different from single NPs. Herein, we report a new class of double-layered plasmonic–magnetic vesicle assembled from Janus amphiphilic Au-Fe3O4 NPs grafted with polymer brushes of different hydrophilicity on Au and Fe3O4 surfaces separately. Like liposomes, the vesicle shell is composed of two layers of Au-Fe3O4 NPs in opposite direction, and the orientation of Au or Fe3O4 in the shell can be well controlled by exploiting the amphiphilic property of the two types of polymers.  相似文献   

6.
The shape and size of monodisperse Fe3O4 nanoparticles (NPs) are controlled using a chemical solution synthesis in the presence of the surfactant cetylpyridinium chloride (CPC). Cubic Fe3O4 NPs surrounded by six {100} planes are obtained in the absence of CPC. Increasing the CPC content during synthesis causes the shape of the resulting Fe3O4 NPs to change from cubic to truncated cubic, cuboctahedral, truncated octahedral, and finally octahedral. During this evolution, the predominantly exposed planes of the Fe3O4 NPs vary from {100} to {111}. The shape control results from the synergistic effect of the pyridinium cations, chloride anions, and long‐chain alkyl groups of CPC, which is confirmed by comparison with NPs synthesized in the presence of various related cationic surfactants. The size of the cubic Fe3O4 NPs can be tuned from 50 to 200 nm, by changing the concentration of oleic acid in the reaction solution. The Fe3O4 NPs exhibit shape‐dependent saturation magnetization, remanent magnetization, and coercivity.  相似文献   

7.
In this work, functionalized chitosan end‐capped Ag nanoparticles (NPs) and composited with Fe3O4‐NPs was prepared as pH‐responsive controlled release carrier for gastric‐specific drug delivery. The structure of prepared material was characterized by FE‐SEM, XRD, EDS and FT‐IR analysis. The loading behavior of the progesterone onto this novel material was studied in aqueous medium at 25°C and their release was followed spectrophotometrically at 37°C in seven different buffer solutions (pH 1.2, 2.2, 3.2, 4.2, 5.2, 6.2 and 7.2) to simulate intestine and gastric media which experimental results reveal more release rate in pH 1.2 (gastric medium) with respect to other buffers. This observation is attributed to dependency of the CS‐IMBDO‐Ag‐Fe3O4‐NPs and progesterone structure with buffer pH that candidate this new material as prospective pH‐sensitive carrier for gastric‐targeted drug delivery. On the other hand, the antibacterial properties of this material against gram‐negative bacterium pseudomonas aeruginosa (PAO‐1) in agar plates was studied and accordingly based on broth micro dilution the minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) with respect to standard CLSI in different concentrations of CS‐IMBDO‐Ag‐Fe3O4‐NPs was calculated. The results reveal that MIC and MBC values are 50 and 1250 μg/mL, respectively. In addition, extracts of Portulaca oleracea leaves was prepared and its antibacterial activity in single and binary system with CS‐IMBDO‐Ag‐Fe3O4‐NPs as synergies effect against PAO‐1 was tested and results shown that these materials have significant synergistic effect for each other.  相似文献   

8.
A facile in situ method to grow Au nanoparticles (NPs) in hexaniobate nanoscrolls is applied to the formation of plasmonic Au@hexaniobate and bifunctional plasmonic‐magnetic Au‐Fe3O4@hexaniobate nanopeapods (NPPs). Utilizing a solvothermal treatment, rigid multiwalled hexaniobate nanoscrolls and partially filled Fe3O4@hexaniobate NPPs were first fabricated. These nanostructures were then used as templates for the controlled in situ growth of Au NPs. The resulting peapod structures exhibited high filling fractions and long‐range uniformity. Optical measurements showed a progressive red shift in plasmonic behavior between Au NPs, Au NPPs, and Au‐Fe3O4 NPPs; magnetic studies found that the addition of gold in the Fe3O4@hexaniobate NPPs reduced interparticle coupling effects. The development of this approach allows for the routine bulk preparation of noble‐metal‐containing bifunctional nanopeapod materials.  相似文献   

9.
Designed nitrogen and sulfur co‐doped graphene wrapped magnetic core‐shell supported Pd nanoparticles were synthesized through the following steps. Firstly, Fe3O4 was prepared, coated with silica and then functionalized with amine groups to create a positive charge on the structure for enhancing the interaction of the Fe3O4@SiO2 with graphene oxide. Secondary, the pre‐catalyst wrapped with graphene to enhance adsorption of aromatic substrates through π–π stacking. Thirdly, graphene was doped with nitrogen and sulfur to increase the grafting of Pd in hybrid. Finally, Pd NPs were attached on the surface of pre‐engineered structure to produce Fe3O4@SiO2@N,S‐wG@Pd which exhibited high performance in Suzuki reactions. This superior activity can be indexed to the incorporation of N and S atoms into graphene led to high anchoring and well‐dispersion of Pd NPs on the nanocomposite surface offering large amounts of active centers, that strongly increased the interaction between Pd and substrates to decreases Pd leaching.  相似文献   

10.
Au nanoparticles (Au NPs) play a vital role in heterogeneous catalytic reactions. However, pristine Au NPs usually suffer from poor selectivity and difficult recyclability. In this work, Fe3O4‐Au@CeO2 hybrid nanofibers were prepared via a simple one‐pot redox reaction between HAuCl4 and Ce (NO3)3 in the presence of Fe3O4 nanofibers. CeO2 shell was uniformly coated on the surface of Fe3O4 nanofibers to form a unique core‐shell structure, while Au NPs were encapsulated inside the CeO2 shell. The as‐prepared Fe3O4‐Au@CeO2 hybrid nanofibers have been proved to be positively surface charged due to the formation of CeO2 shell, enabling them to be good candidates for predominant selective catalytic activity towards the degradation of negatively charged organic dyes. In addition, the Fe3O4‐Au@CeO2 hybrid nanofibers showed magnetic properties, offering them excellent recyclable usability. This work presents a facile and effective solution to prepare magnetic noble metal/metal oxide hybrid nanomaterials with unique chemical structure and surface characteristic for promising applications in heterogeneous catalysis.  相似文献   

11.
A strategy has been developed for the synthesis, characterization and catalysis of magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd core‐shell structure supported catalyst. The P(GMA‐EGDMA) polymer layer was coated on the surface of hollow magnetic Fe3O4 microspheres through the effect of KH570. The core‐shell magnetic Fe3O4/P(GMA‐EGDMA) modified by ‐NH2 could be grafted with HPG. Then, the hyperbranched glycidyl (HPG) with terminal ‐OH were modified by ‐COOH and adsorbed Pd nanoparticles. The hyperbranched polymer layer not only protected the Fe3O4 magnetic core from acid–base substrate corrosion, but also provided a number of functional groups as binding sites for Pd nanoparticles. The prepared catalyst was characterized by UV–vis, TEM, SEM, FTIR, TGA, ICP‐OES, BET, XRD, DLS and VSM. The catalytic tests showed that the magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd catalyst had excellent catalytic performance and retained 86% catalytic efficiency after 8 consecutive cycles.  相似文献   

12.
Three kinds of polyhedral α‐Fe2O3 nanoparticles enclosed by different facets including oblique parallel hexahedrons (op‐hexahedral NPs), cracked oblique parallel hexahedrons (cop‐hexahedral NPs), and octadecahedral nanoparticles (octadecahedral NPs), were successfully prepared by simply changing only one reaction parameter in the hydrothermal process. The structural and morphological of the products were systematically studied using various characterizations including X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), revealing that the three kinds of α‐Fe2O3 nanoparticles were enclosed by {104}, {110}/{104}, and {102}/{012}/{104} crystal planes, respectively. The exposed facets and shape of the nanocrystals were found to be affected by the adding amount of ethylene glycol in the solvent. The gas‐sensing properties and mechanism of the α‐Fe2O3 samples were studied and analyzed, which indicated that the sensitivity of the three samples followed the order of octadecahedral NPs > cop‐hexahedral NPs > op‐hexahedral NPs due to the combined effects of specific surface area and oxygen defects in the nanocrystals.  相似文献   

13.
Fe3O4 nanoparticles (NPs) were prepared by the co‐precipitation of Fe3+ and Fe2+ with ammonium hydroxide, and were modified by four different surfactants. The modified Fe3O4 NPs were characterized by Fourier transform infrared spectroscopy, X‐ray powder diffraction, transmission electron microscopy and vibrating sample magnetometer. Then, the modified Fe3O4 NPs were dispersed in ethiodized‐oil by mechanical agitation and ultrasonic vibration to obtain stable Fe3O4/ethiodized‐oil magnetic fluids (MFs). The magnetic properties and rheological properties of the MFs were measured using a Gouy magnetic balance and a rotational rheometer, respectively. The saturation magnetization of the Fe3O4 modified by oleic acid was 52.1 emu/g. Furthermore, the result showed that the inductive heating effect of oleic acid stabilized Fe3O4/ethiodized‐oil MF was remarkable and it only took 650 s for the temperature rising from 25°C to 65°C. The specific absorption rate of the MF was 50.16 W/(g of Fe). It had a potential application in arterial embolization hyperthermia.  相似文献   

14.
A composite of highly dispersed Fe3O4 nanoparticles (NPs) anchored in three‐dimensional hierarchical porous carbon networks (Fe3O4/3DHPC) as an anode material for lithium‐ion batteries (LIBs) was prepared by means of a deposition technique assisted by a supercritical carbon dioxide (scCO2)‐expanded ethanol solution. The as‐synthesized Fe3O4/3DHPC composite exhibits a bimodal porous 3D architecture with mutually connected 3.7 nm mesopores defined in the macroporous wall on which a layer of small and uniform Fe3O4 NPs was closely coated. As an anode material for LIBs, the Fe3O4/3DHPC composite with 79 wt % Fe3O4 (Fe3O4/3DHPC‐79) delivered a high reversible capacity of 1462 mA h g?1 after 100 cycles at a current density of 100 mA g?1, and maintained good high‐rate performance (728, 507, and 239 mA h g?1 at 1, 2, and 5 C, respectively). Moreover, it showed excellent long‐term cycling performance at high current densities, 1 and 2 A g?1. The enhanced lithium‐storage behavior can be attributed to the synergistic effect of the porous support and the homogeneous Fe3O4 NPs. More importantly, this straightforward, highly efficient, and green synthetic route will definitely enrich the methodologies for the fabrication of carbon‐based transition‐metal oxide composites, and provide great potential materials for additional applications in supercapacitors, sensors, and catalyses.  相似文献   

15.
A new mesoporous organic–inorganic nanocomposite was formulated and then used as stabilizer and support for the preparation of palladium nanoparticles (Pd NPs). The properties and structure of Pd NPs immobilized on prepared 1,4‐diazabicyclo[2.2.2]octane (DABCO) chemically tagged on mesoporous γ‐Fe2O3@hydroxyapatite (ionic modified (IM)‐MHA) were investigated using various techniques. The synergistic effects of the combined properties of MHA, DABCO and Pd NPs, and catalytic activity of γ‐Fe2O3@hydroxyapatite‐DABCO‐Pd (IM‐MHA‐Pd) were investigated for the Heck cross‐coupling reaction in aqueous media. The appropriate surface area and pore size of mesoporous IM‐MHA nanocomposite can provide a favourable hard template for immobilization of Pd NPs. The loading level of Pd in the nanocatalyst was 0.51 mmol g?1. DABCO bonded to the MHA surface acts as a Pd NP stabilizer and can also lead to colloidal stability of the nanocomposite in aqueous solution. The results reveal that IM‐MHA‐Pd is highly efficient for coupling reactions of a wide range of aryl halides with olefins under green conditions. The superparamagnetic nature of the nanocomposite means that the catalyst to be easily separated from solution through magnetic decantation, and the catalytic activity of the recycled IM‐MHA‐Pd showed almost no appreciable loss even after six consecutive runs.  相似文献   

16.
We present the first results of electron magnetic resonance (EMR) and Mössbauer spectroscopy studies of γ‐Fe2O3 nanoparticles (NPs) incorporated into liquid‐crystalline, second‐generation dendrimers. The mean size of NPs formed in the dendrimers was around 2.5 nm. A temperature‐driven transition from superparamagnetic to ferrimagnetic resonance was observed for the sample. Low‐temperature blocking of the NP magnetic moments has been clearly evidenced in the integrated EMR line intensity and the blocking temperature was about 60 K. The physical parameters of magnetic NPs (magnetic moment, effective magnetic anisotropy) have been determined from analyses of the EMR data. The effective magnetic anisotropy constant is enhanced relative to bulk γ‐Fe2O3 and this enhanced value is associated with the influence of the surface and shape effects. The angular dependence of the EMR signal position for the field‐freezing sample from liquid‐crystalline phase showed that NPs possessed uniaxial anisotropy, in contrast to bulk γ‐Fe2O3. Mössbauer spectroscopy determined that fabricated NPs consisted of an α‐Fe core and a γ‐Fe2O3 shell.  相似文献   

17.
The ever‐increasing resistance of plant microbes towards fungicides and bactericides has been causing serious threat to plant production in recent years. For the development of an effective antifungal agent, we introduce a novel hydrothermal protocol for synthesis of chitosan iron oxide nanoparticles (CH‐Fe2O3 NPs) using acetate buffer of low pH 5.0 for intermolecular interaction of Fe2O3 NPs and CH. The composite structure and elemental elucidation were carried out by using X‐ray power diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X‐ray (EDX), Transmission Electron Microscopy (TEM), Fourier Transformed Infrared Spectroscopy (FTIR) and Ultraviolet Visible Absorption Spectroscopy (UV–vis spectroscopy). Additionally, antifungal activity was evaluated both In vitro and In vivo against Rhizopus oryzae which is causing fruit rot disease of strawberry. We compared different concentrations (0.25%, 0.50%, 075% and 1%) of CH‐Fe2O3 NPs and 50% synthetic fungicide (Matalyxal Mancozab) to figure out suitable concentration for application in the field. XRD analysis showed a high crystalline nature of the NPs with average size of 52 nanometer (nm). SEM images revealed spherical shape with size range of 50–70 nm, whereas, TEM also revealed spherical shape, size ranging from 0 nm to 80 nm. EDX and FTIR results revealed presence of CH on surface of Fe2O3 NPs. The band gap measurement showed peak 317–318 nm for bare Fe2O3 NPs and CH‐Fe2O3 NPs respectively. Antifungal activity in both In vitro and In vivo significantly increased with increase in concentration. The overall results revealed high synergetic antifungal potential of organometallic CH‐Fe2O3 NPs against Rhizopus oryzae and suggest the use of CH‐Fe2O3 NPs against other Phyto‐pathological diseases due to biodegradable nature.  相似文献   

18.
Green tea extract having many phenolic hydroxyl and carbonyl functional groups in its molecular framework can be used in the modification of Fe3O4 nanoparticles. Moreover, the feasibility of complexation of polyphenols with silver ions in aqueous solution can improve the surface properties and capacity of the Fe3O4@green tea extract nanoparticles (Fe3O4@GTE NPs) for sorption and reduction of silver ions. Therefore, the novel Fe3O4@GTE NPs nano‐sorbent has potential ability as both reducing and stabilizing agent for immobilization of silver nanoparticles to make a novel magnetic silver nanocatalyst (Fe3O4@GTE/Ag NPs). Inductively coupled plasma analysis, transmission and scanning electron microscopies, energy‐dispersive X‐ray and Fourier transform infrared spectroscopies, and vibrating sample magnetometry were used to characterize the catalyst. Fe3O4@GTE/Ag NPs shows high catalytic activity as a recyclable nanocatalyst for the reduction of 4‐nitrophenol at room temperature.  相似文献   

19.
Thermal decomposition, as the main synthetic procedure for the synthesis of magnetic nanoparticles (NPs), is facing several problems, such as high reaction temperatures and time consumption. An improved a microwave‐assisted thermal decomposition procedure has been developed by which monodisperse Fe3O4 NPs could be rapidly produced at a low aging temperature with high yield (90.1 %). The as‐synthesized NPs show excellent inductive heating and MRI properties in vitro. In contrast, Fe3O4 NPs synthesized by classical thermal decomposition were obtained in very low yield (20.3 %) with an overall poor quality. It was found for the first time that, besides precursors and solvents, magnetic NPs themselves could be heated by microwave irradiation during the synthetic process. These findings were demonstrated by a series of microwave‐heating experiments, Raman spectroscopy and vector‐network analysis, indicating that the initially formed magnetic Fe3O4 particles were able to transform microwave energy into heat directly and, thus, contribute to the nanoparticle growth.  相似文献   

20.
《Electroanalysis》2017,29(3):765-772
Stable magnetic nanocomposite of gold nanoparticles (Au‐NPs) decorating Fe3O4 core was successfully synthesized by the linker of Boc‐L‐cysteine. Transmission electron microscope (TEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammograms (CV) were performed to characterize the as‐prepared Fe3O4@Au‐Nps. The results indicated that Au‐Nps dispersed homogeneously around Fe3O4 with the ratio of Au to Fe3O4 nanoparticles as 5–10/1 and the apparent electrochemical area as 0.121 cm2. After self‐assembly of hemoglobin (Hb) on Fe3O4@Au‐Nps by electrostatic interaction, a hydrogen peroxide biosensor was developed. The Fe3O4@Au‐Nps/Hb modified GCE exhibited fast direct electron transfer between heme center and electrode surface with the heterogeneous electron transfer rate constant (Ks ) of 3.35 s−1. Importantly, it showed excellent electrocatalytic activity towards hydrogen peroxide reduction with low detection limit of 0.133 μM (S /D =3) and high sensitivity of 0.163 μA μM−1, respectively. At the concentration evaluated, the interfering species of glucose, dopamine, uric acid and ascorbic acid did not affect the determination of hydrogen peroxide. These results demonstrated that the introduction of Au‐Nps on Fe3O4 not only stabilized the immobilized enzyme but also provided large surface area, fast electron transfer and excellent biocompatibility. This facile nanoassembly protocol can be extended to immobilize various enzymes, proteins and biomolecules to develop robust biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号