首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The synthesis and self‐assembly behavior of porphyrin–polypyridyl ruthenium(II) hybrid, which consists of a flexible alkyl chain attached with two conjugated moieties is described. The electronic absorption spectrum and emission spectra show that the [C8‐TPP‐(ip)Ru(phen)2](ClO4)2, abbreviated as (C8ip)TPPC has optical properties. Scanning tunneling microscopy (STM) studies found that the π–π interaction and metal–ligand interaction allow (C8ip)TPPC to form self‐assembled structure and have an edge‐on orientation on the highly oriented pyrolytic graphite (HOPG) surface. The multidentate structure in (C8ip)TPPC molecules act as linkers between the molecules and form metal–ligand coordination, which forces the assembly process in the direction of stable columnar arrays. In addition, although the sample was stored for two months in ambient conditions, STM experiments showed that the order of (C8ip)TPPC self‐assembly only slightly decreased which indicates that the self‐assembled monolayer is stable. This work demonstrates that introducing a metal‐ligand in the porphyrin‐polypyridyl compound is a useful strategy to obtain novel surface assemblies.  相似文献   

2.
The synthesis and structures of the N‐[(2‐hydroxy‐3‐methyl‐5‐dodecylphenyl)methyl]‐N‐(carboxymethyl)glycine disodium salt (H L ) ligand and its neutral mononuclear complex [FeIII( L )(EtOH)2] ( 1 ) are reported. Structural and electronic properties of 1 were investigated by using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy (CITS) techniques. These studies reveal that molecules of 1 form well‐ordered self‐assemblies when deposited on a highly oriented pyrolytic graphite (HOPG) surface. At low concentrations, single or double chains (i.e., nanowires) of the complex were observed, whereas at high concentration the complex forms crystals and densely packed one‐dimensional structures. In STM topographies, the dimensions of assemblies of 1 found on the surface are consistent with dimensions obtained from X‐ray crystallography, which indicates the strong similarities between the crystal form and surface assembled states. Double chains are attributed to hydrogen‐bonding interactions and the molecules align preferentially along graphite defects. In the CITS image of complex 1 a strong tunneling current contrast at the positions of the metal ions was observed. These data were interpreted and reveal that the bonds coordinating the metal ions are weaker than those of the surrounding ligands; therefore the energy levels next to the Fermi energy of the molecule should be dominated by metal‐ion orbitals.  相似文献   

3.
The 2D self‐assembly of various 2‐hydroxy‐7‐alkoxy‐9‐fluorenone (HAF) molecules has been investigated by scanning tunneling microscopy (STM) at the liquid/solid interface. A systematic study revealed that HAF molecules with different numbers of carbon atoms in their alkoxy chains could form two or three different kinds of nanostructures, that is, less‐ordered, flower‐like, and zig‐zag patterns, owing to the formation of different types of intermolecular hydrogen bonds. The observed structural transition was found to be driven by molecular thermodynamics, surface diffusion, and the voltage pulse that was applied to the STM tip. The zig‐zag pattern was the most stable of these configurations. An odd–even effect on the flower‐like structure, as induced by the odd and even number of carbon atoms in the side chain, was observed by STM. The influence of the odd–even effect on the melting point has a close relationship with the molecular self‐assembled pattern. Our results are significant for understanding the influence of hydrogen‐bonding interactions on the dominant adsorption behavior on the surface and provide a new visual approach for observing the influence of the odd–even effect on the phase transition.  相似文献   

4.
Density‐functional based calculations were used to investigate self‐assembled monolayers of different alkylphosphonic acids on corundum α‐Al2O3 (0001), bayerite β‐Al(OH)3 (001) and boehmite γ‐AlOOH (010) surface models. Mono‐, bi‐, and tridentate adsorption modes were considered. In addition, the organization of single adsorbed molecules was compared to the organization at full surface coverage. The height (thickness) of the self‐assembled monolayers is always shorter than the length of the phosphonic acid molecules due to tilting of the alkyl chains. Tilt angles at full surface coverage are very similar to the tilt angle of a single adsorbed molecule, which indicates that the density of the self‐assembled monolayers is limited by the density of adsorption sites. The lateral interactions between alkyl chains are evidenced by small torsions of the adsorbed molecules, which may serve to minimize the repulsion forces between interchain hydrogen atoms. Similar tilt angles were obtained for mono‐, bi‐, and tridentate adsorptions. Hence, the coordination mode cannot be characterized by the molecule tilting.  相似文献   

5.
The structure of trans‐3‐(3‐pyridyl)acrylic acid, C8H7NO2, (I), possesses a two‐dimensional hydrogen‐bonded array of supramolecular ribbons assembled via heterodimeric synthons between the pyridine and carboxyl groups. This compound is photoreactive in the solid state as a result of close contacts between the double bonds of neighbouring molecules [3.821 (1) Å] along the a axis. The crystal structure of the photoproduct, rctt‐3,3′‐(3,4‐dicarboxycyclobutane‐1,2‐diyl)dipyridinium dichloride, C16H16N2O42+·2Cl, (II), consists of a three‐dimensional hydrogen‐bonded network built from crosslinking of helical chains integrated by self‐assembly of dipyridinium cations and Cl anions via different O—H...Cl, C—H...Cl and N+—H...Cl hydrogen‐bond interactions.  相似文献   

6.
Two novel nonsymmetrical disc‐shaped molecules 1 and 2 based on 3,3′‐bis(acylamino)‐2,2′‐bipyridine units were synthesized by means of a statistical approach. Discotic 1 possesses six chiral dihydrocitronellyl tails and one peripheral phenyl group, whereas discotic 2 possesses six linear dodecyloxy tails and one peripheral pyridyl group. Preorganization by strong intramolecular hydrogen bonding and subsequent aromatic interactions induce self‐assembly of the discotics. Liquid crystallinity of 1 and 2 was determined with the aid of polarized optical microscopy, differential scanning calorimetry, and X‐ray diffraction. Two columnar rectangular mesophases (Colr) have been identified, whereas for C3‐symmetrical derivatives only one Colr mesophase has been found. 1 In solution, the molecularly dissolved state in chloroform was studied with 1H NMR spectroscopy, whereas the self‐assembled state in apolar solution was examined with optical spectroscopy. Remarkably, these desymmetrized discotics, which lack one aliphatic wedge, behave similar to the symmetric parent compound. To prove that the stacking behavior of discotics 1 and 2 is similar to that of reported C3‐symmetrical derivatives, a mixing experiment of chiral 1 with C3‐symmetrical 13 has been undertaken; it has shown that they indeed belong to one type of self‐assembly. This helical J‐type self‐assembly was further confirmed with UV/Vis and photoluminescence (PL) spectroscopy. Eventually, disc 2 , functionalized with a hydrogen‐bonding acceptor moiety, might perform secondary interactions with molecules such as acids.  相似文献   

7.
Supramolecular forces govern self‐assembly and further determine the final morphologies of self‐assemblies. However, how they control the morphology remains hitherto largely unknown. In this paper, we have discovered that the self‐assembled nanostructures of rigid organic semiconductor chromophores can be finely controlled by the secondary forces by fine‐tuning the surrounding environments. In particular, we used water/methanol/hydrochloric acid to tune the environment and observed five different phases that resulted from versatile molecular self‐assemblies. The representative self‐assembled nanostructures were nanotapes, nanoparticles and their 1D assemblies, rigid microplates, soft nanoplates, and hollow nanospheres and their 1D assemblies, respectively. The specific nanostructure formation is governed by the water fraction, Rw, and the concentration of hydrochloric acid, [HCl]. For instance, nanotapes formed at low [HCl] and Rw values, whereas hollow nanospheres formed when either the HCl concentration is high, or the water fraction is low, or both. The significance of this paper is that it provides a useful phase diagram by using Rw and [HCl] as two variables. Such a self‐assembly phase diagram maps out the fine control that the secondary forces have on the self‐assembled morphology, and thus allows one to guide the formation toward a desired nanostructure self‐assembled from rigid organic semiconductor chromophores by simply adjusting the two key parameters of Rw and [HCl].  相似文献   

8.
A novel three‐dimensional framework of 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole dihydrate, C11H10N4·2H2O or L·2H2O, (I), in which L acts as both hydrogen‐bond acceptor and donor in the supramolecular construction with water, has been obtained by self‐assembly reaction of L with H2O. The two independent water molecules are hydrogen bonded alternately with each other to form a one‐dimensional infinite zigzag water chain. These water chains are linked by the benzimidazole molecules into a three‐dimensional framework, in which each organic molecule is hydrogen bonded by three water molecules. This study shows that the diversity of hydrogen‐bonded patterns plays a crucial role in the formation of the three‐dimensional framework. More significantly, as water molecules are important in contributing to the conformation, stability, function and dynamics of biomacromolecules, the infinite chains of hydrogen‐bonded water molecules seen in (I) may be a useful model for water in other chemical and biological processes.  相似文献   

9.
Introduction Optically active 1,1'-bi-2-naphthol (BINOL) and its derivatives have been widely used as chiral ligands of catalysts for asymmetric reactions and effective host compounds for the isolation or optical resolution of a wide range of organic guest molecules through the for-mation of crystalline inclusion complexes.1,2 The wide-ranging and important applications of these com-pounds in organic synthesis have stimulated great inter-est in developing efficient methods for their prepara-…  相似文献   

10.
An appropriate understanding of the process of self‐assembly is of critical importance to tailor nanostructured order on 2D surfaces with functional molecules. Photochromic compounds are promising candidates for building blocks of advanced photoresponsive surfaces. To investigate the relationship between molecular structure and the mechanism of ordering formation, 2‐thienyl‐type diarylethenes with various lengths of alkyl side chains linked through an amide or ester group were synthesized. Their self‐assemblies at a liquid/solid interface were investigated by scanning tunneling microscopy (STM). The concentration dependence of the surface coverage was analyzed by using a cooperative model for a 2D surface based on two characteristic parameters: the nucleation equilibrium constant (Kn) and the elongation equilibrium constant (Ke). The following conclusions can be drawn. 1) The concentration at which a stable 2D molecular ordering is observed by STM exponentially decreases with increasing length of the alkyl chain. 2) Compounds bearing amide groups have higher degrees of cooperativity in self‐assembly on 2D surfaces (i.e., σ, which is defined as Kn/Ke) than compounds with ester groups. 3) The self‐assembly process of the open‐ring isomer of an ester derivative is close to isodesmic, whereas that of the closed‐ring isomer is cooperative because of the difference in equilibrium constants for the nucleation step (i.e., Kn) between the two isomers.  相似文献   

11.
A new class of poly(benzyl ether) dendrimers, decorated in their cores with N‐Boc‐protected 1,2‐diphenylethylenediamine groups, were synthesized and fully characterized. It was found that the gelation capability of these dendrimers was highly dependent on dendrimer generation, and the second‐generation dendrimer (R,R)‐G2DPENBoc proved to be a highly efficient organogelator. A number of experiments (SEM, TEM, FTIR spectroscopy, 1H NMR spectroscopy, rheological measurements, UV/Vis absorption spectroscopy, CD, and XRD) revealed that these dendritic molecules self‐assembled into elastically interpenetrating one‐dimensional nanostructures in organogels. The hydrogen bonding, π–π, and solvophobic interactions were found to be the main driving forces for formation of the gels. Most interestingly, these dendritic organogels exhibited smart multiple‐stimulus‐responsive behavior upon exposure to environmental stimuli such as temperature, anions, and mechanical stress.  相似文献   

12.
T‐shaped coil–rod–coil oligomers, consisting of a dibenzo[a,c]phenazine unit and phenyl groups linked together with acetylenyl bonds at the 2,7‐position of dibenzo[a,c]phenazine as a rigid segment have been synthesized. The coil segments of these new molecules composed of poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO) incorporating lateral methyl groups between the rod and coil segment and two flexible alkyl groups connecting with the rigid segment at the 4,6‐position of dibenzo[a,c]phenazine, respectively. The experimental results reveal that the length of the flexible PEO coil chain influence construction of various supra‐nanostructures from lamellar structure to rectangular columnar structure. It is also shown that introduction of different length of alkyl side chain groups in the backbone of the T‐shaped molecules affect the self‐organization behavior to form hexagonal perforate layer or oblique columnar structures. In addition, lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self‐assembling behavior in the crystalline phase. T‐shaped molecules containing a lateral methyl group at the surface of rod and PEO coil segments, self‐assemble into 3D body‐centered tetragonal structures in the crystalline phase, while molecules without a lateral methyl group based on PEO coil chain self‐organize into 2D oblique columnar crystalline structures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5021–5028  相似文献   

13.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

14.
The molecular packing structure in the self‐assembled p‐n and n‐p‐n heterostructure oligomers (OT2O and T2O2) was investigated. The macroscopic properties of the two oligomers were systemically investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and X‐ray diffraction (XRD), which revealed that the 3D (three‐dimensional) assemblies of the two oligomers exhibited obvious differences. The two‐dimensional assemblies (2D) of them were identified by scanning tunneling microscopy (STM) on a highly oriented poyrolytic graphite (HOPG) surface. Well‐ordered monolayer assembly structures were fabricated by symmetric molecules (OT2Os), while the ordered dormain of asymmetric molecule (T2O2s) could not be clearly resolved. This system, as an excellent example, may provide guidance for the design of the novel p‐n heterostructure oligomer and polymer.  相似文献   

15.
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature.  相似文献   

16.
Hydrogen‐bonded supramolecular polymers were prepared from the derivatives of α‐amino‐ε‐caprolactam (ACL), obtained from a renewable resource. Several self‐complimentary bis‐ or tetra‐caprolactam monomers were synthesized by varying the number of carbons of the spacer between the hydrogen‐bonding end groups. Physical properties of these hydrogen‐bonded polymers were clearly demonstrated by differential scanning colorimetry, solid‐state NMR, and X‐ray powder diffraction analyses. The supramolecular behavior was also supported by fiber formation from the melt for several of these compounds, and stable glassy materials were prepared from the physical mixtures of two different biscaprolactams. The self‐association ability of ACL was also used by incorporating ACL at the chain ends of low‐molecular weight Jeffamine (Mn = 900 g/mol) using urea and amide linkages. The transformation of this liquid oligomer at room temperature into a self‐standing, transparent film clearly showed the improvement in mechanical properties obtained by the introduction of terminal hydrogen‐bonding groups. Finally, the use of monomers with a functionality of four gave rise to network formation either alone or combination with bifunctional monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Self‐assembled donor/acceptor dyads are of current interest as they are biomimetic to the natural photosynthetic conversion system. Herein, we present an ultrahigh‐vacuum scanning tunneling microscopy and scanning tunneling spectroscopy (UHV‐STM/STS) study of ex situ self‐assembled supramolecular dyads consisting of fulleropyrrolidines (PyC2C60) axially ligated to zinc(II) tetraphenylporphyrin (ZnTPP), self organized on a 4‐aminothiophenol (4‐ATP) self‐assembled monolayer on gold(111). These dyads show both bias‐polarity‐dependent apparent height in STM images and highly rectifying behavior in tunneling spectroscopy. First‐principles density functional theory calculations clarify the conformational and electronic properties of the 4‐ATP/ZnTPP/PyC2C60 system. Interestingly, we find easier tunneling for electrons moving from the acceptor side of the dyads to the donor side, in the inverse‐rectifying sense with respect to previously reported molecular rectifiers. Such behavior cannot be explained as an elastic resonant tunneling process, but it can by using a model based on the Aviram–Ratner mechanism.  相似文献   

18.
A series of 5,11,17‐triazatrinaphthylene (TrisK) derivatives, large disk‐like π‐conjugated molecules with C3h symmetry, has been synthesised by following an optimised synthetic pathway. The synthesis was performed by a four‐step protocol based on the N‐arylation of 1,3,5‐tribromobenzene with appropriate anthranilate derivatives. This strategy permits the generation of either chlorinated ( TrisK‐Cl‐OCn ) or non‐chlorinated ( TrisK‐H‐OCn ) alkoxy‐substituted derivatives (OCnH2n+1 with n=3, 10, 12 and 16), thus providing additional versatility in the control of the structure–property relationships. The electronic properties of the various TrisK compounds have been characterised in solution by absorption and emission spectroscopies as well as cyclic voltammetry. The crystal structure of 2,8,14‐propyloxy‐5,11,17‐triazatrinaphthylene TrisK‐H‐OC3 has been determined by X‐ray diffraction analysis, which revealed the presence of stabilising weak intermolecular H bonds. Scanning tunnelling microscopy (STM) at the liquid/solid interface has revealed the remarkable 2D self‐assembling properties of the TrisK compounds. In particular, it has shown that TrisK‐H‐OC12 forms three concomitant self‐organised 2D phases with different row‐packing arrangements. This 2D polymorphism arises from slow ordering due to the presence of three long dodecyloxy chains on the molecular backbone. Individual molecules can be imaged with spectacular intramolecular resolution, thus providing the possibility of correlating the STM features with the calculated charge density distribution.  相似文献   

19.
The synthesis of C3‐ and C2‐symmetric benzene‐1,3,5‐tricarboxamides (BTAs) containing well‐defined oligodimethylsiloxane (oDMS) and/or alkyl side chains has been carried out. The influence of the bulkiness of the oDMS chains in the aggregation behavior of dilute solutions of the oDMS‐BTAs in methylcyclohexane was studied by temperature‐dependent UV spectroscopy. The formation of hierarchically self‐assembled aggregates was observed at different BTA concentrations, the tendency of aggregation increases by shortening or removing oDMS chains. Chiral BTAs were investigated with circular dichroism (CD) spectroscopy, showing a stronger tendency to aggregate than the achiral ones. Majority rules experiments show a linear behavior consistent with the existence of a high mismatch penalty energy. The most efficient oDMS‐BTAs organogelators have the ability to form stable organogels at 5 mg mL?1 (0.75 wt %) in hexane. Solid‐state characterization techniques indicate the formation of an intermolecular threefold hydrogen bonding between adjacent molecules forming thermotropic liquid crystals, exhibiting a hexagonal columnar organization from room temperature to above 150 °C. A decrease of the clearing temperatures was observed when increasing the number and length of the oligodimethylsiloxane chains. In addition to the three‐fold hydrogen bonding that leads to columnar liquid crystalline phase, segregation between the oDMS and aliphatic chains takes place in the BTA functionalized with two alkyl and one oDMS chain leading to a superlattice within the hexagonal structure with potential applications in lithography.  相似文献   

20.
《Chemphyschem》2004,5(2):202-208
We have designed and synthesized a series of Schiff base derivatives, and studied their structural features in two‐dimensional (2D) and three‐dimensional (3D) states by combining scanning tunneling microscopy (STM) and X‐ray diffraction experiments. The Schiff‐base derivatives with short alkyl chains crystallize easily, which allows a detailed structural analysis by X‐ray diffraction. Due to the strong adsorbate–substrate interactions, those bases with long alkyl chains easily form 2D assemblies on highly oriented pyrolytic graphite (HOPG). The STM images indicate also that the introduction of two methoxy groups into the molecule can change the structure of these 2D assemblies as a result of the increased steric hindrances, for example: the Schiff‐base derivative, bearing both methoxy groups and C16H33 tails, forms 2D Moiré patterns, and an alignment of pairing Schiff‐base molecules may be easily resolved. Conversely, the Schiff base derivative, bearing solely C16H33 tails, forms 2D non‐Moiré patterns. It is demonstrated that the 3D structural features result from the compromise of intermolecular interactions of different molecular moieties. However, there is one more factor, which also governs the 2D structure: the adsorbate‐substrate interaction. The 3D crystal structure may thus help to understand many factors involved in the formation of 2D structures, and would be helpful for designing new molecular assemblies with tailoring functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号