首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
DABCO (1,4‐diazabicyclo[2.2.2]octane)‐modified magnetite with silica‐MCM‐41 shell (Fe3O4@silica‐MCM‐41@DABCO) as an effective, magnetic and novel heterogeneous reusable nanocatalyst was synthesized and analysed using various techniques. Evaluation of the catalytic activity of this nanocatalyst was performed in the clean synthesis of substituted 2‐aminodihydropyrano[3,2‐b]pyran‐3‐cyano in high yields via in situ reaction of azido kojic acid, malononitrile and various aldehydes.  相似文献   

2.
Ni@diaza crown ether complex supported on magnetic nanoparticle was provided by grafting technique. The catalytic activity of Fe3O4@diaza crown ether@Ni was explored through one‐pot synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones and it was used as an efficient and recoverably constant nanocatalyst. FT‐IR, SEM, TEM, XRD, BET, ICP, EDS, and TGA techniques were employed to specify the nanocatalyst. This heterogeneous catalyst demonstrated acceptable recyclability and could be used again several times with no considerable loss of its catalytic activity.  相似文献   

3.
A novel chiral magnetic nanocatalyst was prepared by the surface modification of Fe3O4 magnetic nanoparticles (MNPs) with a chloropropylsilane and further by arginine to form Fe3O4@propylsilan‐arginine (Fe3O4@PS‐Arg). After the structural confirmation of Fe3O4@PS‐Arg synthesized MNPs by Fourier transform‐infrared, X‐ray diffraction, field emission‐scanning electron microscopy, transmission electron microscopy, vibrating‐sample magnetometry and thermogravimetric analyses, their catalytic activity was evaluated for one‐pot enantioselective synthesis of 3‐amino‐1‐aryl‐1H‐benzo[f]chromene‐2‐carbonitrile derivatives. The results showed that in the presence of 0.07 g Fe3O4@PS‐Arg nanocatalyst and ethanol as solvent, the best reaction yield (96%) was obtained in the least time (5 min). Easy operation, reusability and stability, short reaction time, high reaction yields and good enantioselectivity are the major advantages of the newly synthesized nanocatalyst. Also, this study provides a novel strategy for further research and investigation on the synthesis of new reusable enantioselective catalysts and chiral compounds.  相似文献   

4.
《中国化学会会志》2017,64(11):1316-1325
A simple and efficient procedure for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles via the condensation of o‐phenylenediamine, o‐aminophenol, and o‐aminothiophenol with various benzaldehydes by using magnetic Co‐doped NiFe2O4 nanoparticles has been developed. This nanocatalyst has advantages such as excellent product yields, solvent‐free conditions, and very short reaction times. After any experiment, the magnetic nanocatalyst could be easily separated with the aid of an external magnet and reused at least four times without any loss of its catalytic performance.  相似文献   

5.
The catalytic performance of the superparamagnetic nanocatalyst Fe3O4@SiO2@Sulfated boric acid as a green, recyclable, and acidic solid catalyst in the synthesis of chromeno[4,3,2‐de][1,6]naphthyridine derivatives has been studied. Chromeno[4,3,2‐de][1,6]naphthyridine derivatives via a pseudo four‐component reaction from aromatic aldehydes (1 mmol), malononitrile (2 mmol), and 2′‐hydroxyacetophenone in the presence of Fe3O4@SiO2@Sulfated boric acid (0.004 g) as a nanocatalyst in 3 mL of water as a green solvent at 80°C has been synthesized. The advantages of this method are higher product yields in shorter reaction times, easy recyclability and reusability of the catalyst, and easy work‐up procedures. The nanocatalyst was reused at least six times. The nanocatalyst retained its stability in the reaction, and after reusability, it was separated easily from the reaction by an external magnet.  相似文献   

6.
A novel Mo(VI) tetradentate Schiff base complex based on two pyrrole‐imine donors was anchored covalently on Fe3O4 nanoparticles and characterized using physicochemical techniques. The catalytic epoxidation process was optimized in terms of the effects of solvent, reaction temperature, kind of oxidant and amount of oxidant and catalyst. Then the novel heterogeneous nanocatalyst was used for the efficient and selective catalytic epoxidation of internal alkenes (cyclohexene, cyclooctene, α‐pinene, indene and trans ‐1,2‐diphenylethene) and terminal alkenes (n ‐heptene, n ‐octene, n ‐dodecene and styrene) using tert ‐butyl hydroperoxide (70% in water) as oxidant in 1,2‐dichloroethane as solvent. The prepared nanocatalyst is very effective for the selective epoxidation of cis ‐cyclooctene with 100% conversion, 100% selectivity and turnover frequency of 1098 h−1 in just 30 min. The magnetic nanocatalyst was easily recovered using an external magnetic field and was used subsequently at least six times without significant decrease in conversion.  相似文献   

7.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

8.
A new magnetic metal–organic framework nanocomposite (CoFe2O4/TMU‐17‐NH2) was prepared via an embedding approach by synthesis of the metal–organic framework crystals in the presence of magnetic cobalt ferrite nanoparticles. We demonstrated that the resulting magnetic nanocomposite can serve as a recyclable nanocatalyst for one‐pot synthesis of bis‐3,4‐dihydropyrimidin‐2(1H)‐one and 3,4‐dihydropyrimidin‐2(1H)‐one derivatives via three‐component reaction of 1,3‐diketone, urea or thiourea and aromatic aldehyde under solvent‐free conditions. CoFe2O4/TMU‐17‐NH2 was characterized using various techniques. The recovery of the nanocomposite was achieved by a simple magnetic decantation and it was reused at least seven times without significant degradation in catalytic activity.  相似文献   

9.
A green, novel and extremely efficient nanocatalyst was successfully synthesized by the immobilization of Ni as a transition metal on Fe3O4 nanoparticles coated with tryptophan. This nanostructured material was characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, inductively coupled plasma optical emission spectroscopy, vibrating sample magnetometry and X‐ray diffraction. The prepared nanocatalyst was applied for the oxidation of sulfides, oxidative coupling of thiols and synthesis of 5‐substituted 1H‐tetrazoles. The use of non‐toxic, green and inexpensive materials, easy separation of magnetic nanoparticles from a reaction mixture using a magnetic field, efficient and one‐pot synthesis, and high yields of products are the most important advantages of this nanocatalyst.  相似文献   

10.
The immobilization of sulfonic acid on the surface of Fe3O4 magnetic nanoparticles (MNPs) as a novel acid nanocatalyst has been successfully reported. The morphological features, thermal stability, magnetic properties, and other physicochemical properties of the prepared superparamagnetic core–shell (Fe3O4@PFBA–Metformin@SO3H) were thoroughly characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy (EDS), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis–differential thermal analysis (TGA‐DTA), atomic force microscopy (AFM), dynamic light scattering (DLS), Brunauer–Emmett–Teller (BET), and vibrating sample magnetometer (VSM) techniques. It was applied as an efficient and reusable catalyst for the synthesis of 2‐(piperazin‐1‐yl) quinoxaline and benzimidazole derivatives via a one‐pot multiple‐component cascade reaction under green conditions. The results displayed the excellent catalytic activity of Fe3O4@PFBA–metformin@SO3H as an organic–inorganic hybrid nanocatalyst in condensation and multicomponent Mannich‐type reactions. The easy separation, simple workup, excellent stability, and reusability of the nanocatalyst and quantitative yields of products and short reaction time are some outstanding advantages of this protocol.  相似文献   

11.
Uniform SiO2 nanoparticles were successfully prepared from Equisetum arvense obtained from the north‐east of Iran. Then, surface modification of the extracted nanoparticles was performed with a methanol solution of H3PW12O40 via wet impregnation method. The prepared nanocatalyst was characterized by XRD, FESEM, ICP, UV–Vis, and FT‐IR spectroscopy. The supported heterogeneous nanocatalyst was successfully applied as a Lewis/Bronsted acid catalyst in the synthesis of a series of substituted 4H–chromenes via condensation of aromatic aldehydes, malononitrile, and 4‐hydroxycoumarin under solventless conditions with fine yields in appropriately short times.  相似文献   

12.
Fe3O4@SiO2–APTES‐supported trifluoroacetic acid nanocatalyst was used for the one‐pot synthesis of α‐aminonitriles via a three‐component reaction of aldehydes (or ketones), amines, and sodium cyanide. This method produced a high yield of 75–96% using only a small amount of the catalyst (0.05 g) in EtOH at room temperature. The catalyst was also employed for the synthesis of 5‐substituted 1H‐tetrazoles from nitriles and sodium azide in EtOH at 80°C. The tetrazoles were produced with good‐to‐excellent yields in a short reaction time of 4 h. Both synthetic methods were carried out in the absence of an organic volatile solvent. Because the supported trifluoroacetic acid generated a solid acid on the surface, thus the acid corrosiveness was not a serious challenge. This heterogeneous nanocatalyst was magnetically recovered and reused several times without significant loss of catalytic activity.  相似文献   

13.
Cu–S‐(propyl)‐2‐aminobenzothioate supported on functionalized Fe3O4 magnetic nanoparticles is reported as a reusable and highly efficient nanocatalyst for the one‐pot synthesis of polyhydroquinoline derivatives and also for selective oxidation of sulfides to sulfoxides. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, inductively coupled plasma atomic emission spectroscopy and atomic absorption spectroscopy. The nanocatalyst was easily recovered using an external magnet and reused several times without significant loss of its catalytic efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
An environmentally benign magnetic silica‐based nanocomposite (Fe3O4/SBA‐15) as a heterogeneous nanocatalyst was prepared and characterized using Fourier transform infrared and ultraviolet–visible diffuse reflectance spectroscopies, scanning electron microscopy, X‐ray diffraction, vibrating sample magnetometry and Brunauer–Emmett–Teller multilayer nitrogen adsorption. Its catalytic activity was investigated for the one‐pot multicomponent synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones starting from isatoic anhydride, ammonium acetate and various aldehydes under mild reaction conditions and easy work‐up procedure in refluxing ethanol with good yields. The nanocatalyst can be recovered easily and reused several times without significant loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In the present study, for the first time N‐(3‐silyl propyl) diethylene triamine N,N',N''‐tri‐sulfonic acid (SPDETATSA) was grafted on magnetic Fe3‐xTixO4 nanoparticles. The structure of the resulted nanoparticles was characterized based on Fourier‐transform infrared (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analyses. The results confirmed the successful immobilization of sulfamic acid groups onto the magnetic support. These nanoparticles exhibited high catalytic activity as novel magnetically recyclable acid nanocatalyst in the synthesis of a diverse range of hexahydroquinolines through one‐pot tandem reactions in excellent yields. Also, this nanocatalyst performed satisfactory catalytic maintenance of activity for the synthesis of the reaction products after 4 rounds of recycling with no considerable loss of activity.  相似文献   

16.
We report a simple process for the synthesis of Fe3O4@SiO2/APTMS (APTMS = 3‐aminopropyltrimethoxysilane) core–shell nanocatalyst support. The new nanocatalyst was prepared by stabilization of Pd(cdha)2 (cdha = bis(2‐chloro‐3,4‐dihydroxyacetophenone)) on the surface of the Fe3O4@SiO2/APTMS support. The structure and composition of this catalyst were characterized using various techniques. An efficient method was developed for the synthesis of a wide variety of biaryl compounds via fluoride‐free Hiyama cross‐coupling reactions of aryl halides with arylsiloxane, with Fe3O4@SiO2/APTMS/Pd(cdha)2 as the catalyst under reaction conditions. This methodology can be performed at 100°C through a simple one‐pot operation using in situ generated palladium nanoparticles. High catalytic activity, quick separation of catalyst from products using an external magnetic field and use of water as green solvent are attributes of this protocol.  相似文献   

17.
A simple and efficient procedure has been developed for the synthesis of biologically relevant 2‐substituted benzimidazoles through a one‐pot condensation of o‐phenylenediamines with aryl aldehydes catalysed by iron oxide magnetic nanoparticles (Fe3O4 MNPs) in short reaction times with excellent yields. In the present study, Fe3O4 MNPs synthesized in a green manner using aqueous extract of white tea (Camelia sinensis) (Wt‐Fe3O4 MNPs) were applied as a magnetically separable heterogeneous nanocatalyst to synthesize 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole which has potential application in pharmacology and biological systems. Fourier transform infrared and NMR spectroscopies were used to characterize the 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole. In vitro cytotoxicity studies on MOLT‐4 cells showed a dose‐dependent toxicity with non‐toxic effect of 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole, up to a concentration of 0.147 µM. The green synthesized Wt‐Fe3O4 MNPs as recyclable nanocatalyst could be used for further research on the synthesis of therapeutic materials, particularly in nanomedicine, to assist in the treatment of cancer.  相似文献   

18.
S ‐Benzylisothiourea complex of palladium supported on modified Fe3O4 magnetic nanoparticles (Pd‐SBTU@Fe3O4) is reported for carbon–carbon coupling through the Suzuki coupling reaction. Also, the synthesis of polyhydroquinoline derivatives is reported in the presence of Pd‐SBTU@Fe3O4 as nanocatalyst. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, vibrating sample magnetometry and inductively coupled plasma atomic emission spectroscopy. The nanocatalyst was easily recovered using an external magnet and reused several times without significant loss of its catalytic efficiency. The heterogeneity of Pd‐SBTU@Fe3O4 was studied using hot filtration.  相似文献   

19.
A novel magnetic ferrocene‐labelled ionic liquid based on triazolium, [Fe3O4@SiO2@Triazol‐Fc][HCO3], has been synthesized and has been successfully introduced as a recyclable heterogeneous nanocatalyst. The catalytic activity of the novel magnetic nanoparticles was evaluated in the one‐pot three‐component synthesis of a wide variety of Betti bases. A simple, facile and highly efficient green method has been developed for the synthesis of kojic acid‐containing Betti base derivatives at room temperature. Additionally, this new protocol has notable advantages such as short reaction times, green reaction conditions, high yields and simple workup and purification steps. Also, the novel nanocatalyst could be easily recovered using an external magnetic field and reused for six consecutive reaction cycles without significant loss of activity. The newly synthesized nanocatalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller measurements.  相似文献   

20.
The synthesis, characterization and catalytic activity of chloroaluminate ionic liquid‐modified silica‐coated magnetic nanoparticles ([SiPrPy]AlCl4@MNPs) are described. The prepared magnetic nanocatalyst was characterized using Fourier transform infrared spectroscopy, elemental analysis, vibrating sample magnetometry, scanning and transmission electron microscopies, X‐ray diffraction and inductively coupled plasma analysis. The results showed that the ionic liquid had been successfully immobilized onto the magnetic support, and the resulting nanoparticles exhibited high catalytic activity for the synthesis of a diverse range of dihydropyrano[3,2‐b ]chromenediones via a one‐pot, three‐component and solvent‐free reaction of aromatic aldehydes, 1,3‐diones and kojic acid. This catalytic system also showed excellent activity in the selective synthesis of mono‐ and bis‐dihydropyrano[3,2‐b ]chromenediones from dialdehydes. The procedure gave the products in excellent yields and in very short reaction times. Moreover, the catalyst could be reused eight times without loss of its catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号