首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)4(μ‐PCy2)2(μ‐Ph2PCH2PPh2)(μ3‐S){μ3‐η2‐CSC(S)S}] [Ru3(CO)4(μ‐H)3(μ‐PCy2)3(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2) reacts with CS2 at room temperature and yields the open 50 valence electron cluster [Ru3(CO)4(μ‐PCy2)2(μ‐dppm)(μ3‐S){μ3‐η2‐CSC(S)S}] ( 3 ) containing the unusual μ3‐η2‐C2S3 mercaptocarbyne ligand. Compound 3 was characterized by single crystal X‐ray structure analysis.  相似文献   

2.
The reaction of Ru3(CO)10(dotpm) ( 1 ) [dotpm = (bis(di‐ortho‐tolylphosphanyl)methane)] and one equivalent of L [L = PPh3, P(C6H4Cl‐p)3 and PPh2(C6H4Br‐p)] in refluxing n‐hexane afforded a series of derivatives [Ru3(CO)9(dotpm)L] ( 2 – 4 ), respectively, in ca. 67–70 % yield. Complexes 2 – 4 were characterized by elemental analysis (CHN), IR, 1H NMR, 13C{1H} NMR and 31P{1H} NMR spectroscopy. The molecular structures of 2 , 3 , and 4 were established by single‐crystal X‐ray diffraction. The bidentate dotpm and monodentate phosphine ligands occupy equatorial positions with respect to the Ru triangle. The effect of substitution resulted in significant differences in the Ru–Ru and Ru–P bond lengths.  相似文献   

3.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

4.
The methylation of the uncoordinated nitrogen atom of the cyclometalated triruthenium cluster complexes [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐Mepyr)(CO)10] ( 1 ; 2‐MepyrH=2‐methylpyrimidine) and [Ru3(μ‐H)(μ‐κ2N1,C6‐4‐Mepyr)(CO)10] ( 9 ; 4‐MepyrH=4‐methylpyrimidine) gives two similar cationic complexes, [Ru3(μ‐H)(μ‐κ2N1,C6‐2,3‐Me2pyr)(CO)10]+( 2 +) and [Ru3(μ‐H)(μ‐κ2N1,C6‐3,4‐Me2pyr)(CO)10]+ ( 9 +), respectively, whose heterocyclic ligands belong to a novel type of N‐heterocyclic carbenes (NHCs) that have the Ccarbene atom in 6‐position of a pyrimidine framework. The position of the C‐methyl group in the ligands of complexes 2 + (on C2) and 9 + (on C4) is of key importance for the outcome of their reactions with K[N(SiMe3)2], K‐selectride, and cobaltocene. Although these reagents react with 2 + to give [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐CH2‐3‐Mepyr)(CO)10] ( 3 ; deprotonation of the C2‐Me group), [Ru3(μ‐H)(μ3‐κ3N1,C5,C6‐4‐H‐2,3‐Me2pyr)(CO)9] ( 4 ; hydride addition at C4), and [Ru6(μ‐H)26‐κ6N1,N1′,C5,C5′,C6,C6′‐4,4′‐bis(2,3‐Me2pyr)}(CO)18] ( 5 ; reductive dimerization at C4), respectively, similar reactions with 9 + have only allowed the isolation of [Ru3(μ‐H)(μ3‐κ2N1,C6‐2‐H‐3,4‐Me2pyr)(CO)9] ( 11 ; hydride addition at C2). Compounds 3 and 11 also contain novel six‐membered ring NHC ligands. Theoretical studies have established that the deprotonation of 2 + and 9 + (that have ligand‐based LUMOs) are charge‐controlled processes and that both the composition of the LUMOs of these cationic complexes and the steric protection of their ligand ring atoms govern the regioselectivity of their nucleophilic addition and reduction reactions.  相似文献   

5.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

6.
In the presence of iron pentacarbonyl, photochemical reaction between phenylisocyanate and ferrocenylacetylene results in ferrapyrrolinone complex [Fe2(CO)62‐η3‐FcC═C(H)C(O)NPh)] ( 1 ) and maleimide 3‐ferrocenyl‐1‐phenyl‐1H ‐pyrrole‐2,5‐dione ( 2 ). Under similar experimental conditions, ferrocenyl−/phenyl‐substituted butadiyne primarily shows the activation of only one C☰C bond and results in ferrapyrrolinone complexes [Fe2(CO)62‐η3‐FcC═C(C☰CR)C(O)NPh)] ( 3 , R = Fc; 3a , R = Ph), maleimides 3‐ferrocenyl‐1‐phenyl‐4‐(ferrocenylethynyl)‐1H –pyrrole‐2,5‐dione ( 5 ) and 3‐ferrocenyl‐1‐phenyl‐4‐(phenylethynyl)‐1H –pyrrole‐2,5‐dione ( 5a ) and [Fe2(CO)62‐η3‐FcC═C(R)C(O)NPh)] ( 4 ; R  = 3‐ferrocenyl‐1‐phenyl‐1H ‐pyrrole‐2,5‐dione). Compound 4 consists of ferrapyrrolinone and a maleimide unit, formed by the activation of both C☰C bonds of diferrocenylbutadiyne. Activation of both C☰C bonds in a substituted butadiyne is a rare observation. Formation of the ferrapyrrolinone compounds is an advance over the earlier reported methods which generally use internal alkynes and involve prior synthesis of other clusters.  相似文献   

7.
The cationic cluster complexes [Ru3(CO)10(μ‐H)(μ‐κ2N,C‐L1Me)]+ ( 3 +; HL1=quinoxaline) and [Ru3(CO)10(μ‐H)(μ‐κ2N,C‐L2Me)]+ ( 5 +; HL2=pyrazine) have been prepared as triflate salts by treatment of their neutral precursors [Ru3(CO)10(μ‐H)(μ‐κ2N,C‐Ln)] with methyl triflate. The cationic character of their heterocyclic ligands is responsible for their enhanced tendency to react with anionic nucleophiles relative to that of hydrido triruthenium carbonyl clusters that have neutral N‐heterocyclic ligands. These clusters react instantaneously with methyl lithium and potassium tris‐sec‐butylborohydride (K‐selectride) to give neutral products that contain novel nonaromatic N‐heterocyclic ligands. The following are the products that have been isolated: [Ru3(CO)9(μ‐H)(μ3‐κ2N,C‐L1Me2)] ( 6 ; from 3 + and methyl lithium), [Ru3(CO)9(μ‐H)(μ3‐κ2N,C‐L1HMe)] ( 7 ; from 3 + and K‐selectride), [Ru3(CO)9(μ‐H)(μ3‐κ2N,C‐L2Me2)] ( 8 ; from 5 + and methyl lithium), and [Ru3(CO)9(μ‐H)(μ3‐κ2N,C‐L2HMe)] ( 11 ; from 5 + and K‐selectride). Whereas the reactions of 3 + lead to products that arise from the attack of the corresponding nucleophile at the C atom of the only CH group adjacent to the N‐methyl group, the reactions of 5 + give mixtures of two products that arise from the attack of the nucleophile at one of the C atoms located on either side of the N‐methyl group. The LUMOs and the atomic charges of 3 + and 5 + confirm that the reactions of these clusters with anionic nucleophiles are orbital‐controlled rather than charge‐controlled processes. The N‐heterocyclic ligands of all of these neutral products are attached to the metal atoms in nonconventional face‐capping modes. Those of compounds 6 – 8 have the atoms of a ligand C?N fragment σ‐bonded to two Ru atoms and π‐bonded to the other Ru atom, whereas the ligand of compound 11 has a C? N fragment attached to a Ru atom through the N atom and to the remaining two Ru atoms through the C atom. A variable‐temperature 1H NMR spectroscopic study showed that the ligand of compound 7 is involved in a fluxional process at temperatures above ?93 °C, the mechanism of which has been satisfactorily modeled with the help of DFT calculations and involves the interconversion of the two enantiomers of this cluster through a conformational change of the ligand CH2 group, which moves from one side of the plane of the heterocyclic ligand to the other, and a 180° rotation of the entire organic ligand over a face of the metal triangle.  相似文献   

8.
Reactions of pyridine imines [C5H4N‐2‐C(H) = N‐C6H4‐R] [R = H (1), CH3 (2), OMe (3), CF3 (4), Cl (5), Br (6)] with Ru3(CO)12 in refluxing toluene gave the corresponding dinuclear ruthenium carbonyl complexes of the type {μη2‐CH[(2‐C5H4N)(N‐C6H4‐R)]}2Ru2(CO)4(μ‐CO) [R = H (7); CH3 (8); OMe (9); CF3 (10); Cl (11); Br (12)]. All six novel complexes were separated by chromatography, and fully characterized by elemental analysis, IR, NMR spectroscopy. Molecular structures of 7, 10, 11, and 12 were determined by X‐ray crystal diffraction. Further, the catalytic performance of these complexes was also tested. The combination of {μη2‐CH[(2‐C5H4N)(N‐C6H4‐R)]}2Ru2(CO)4(μ‐CO) and NMO afforded an efficient catalytic system for the oxidation of a variety secondary alcohols.  相似文献   

9.
The title compound, 2C5H7N2+·2C23H13O2·H2O, formed as a by‐product in the attempted synthesis of a nonlinear optical candidate molecule, contains two independent 4‐aminopyridinium cations and 2‐(anthracen‐9‐yl)‐3‐oxo‐3H‐inden‐1‐olate anions with one solvent water molecule. This is the first reported structure containing these anions. The two anions are not planar, having different interplanar angles between the anthracenyl and inden‐1‐olate moieties of 59.07 (5) and 83.92 (5)°. The crystal packing, which involves strong classical hydrogen bonds and one C—H...π interaction, appears to account for both the nonplanarity and this difference.  相似文献   

10.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

11.
A series of cycloalkylidene‐bridged mixed cyclopentadienyl‐indenyl tetracarbonyl diruthenium complexes (η55‐RC5H3CR′2C9H6)Ru2(CO)2(µ‐CO)2 [R = H, R′, R′ = Me2 (1), (CH2)4 (2), (CH2)5 (3), (CH2)6 (4); R = tBu, R′, R′ = Me2 (5), (CH2)4 (6), (CH2)5 (7)] have been synthesized by reactions of the corresponding ligands RC5H4CR′2C9H7 with Ru3(CO)12 in refluxing xylene. The molecular structures of 2, 6 and 7 have been determined by X‐ray diffraction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The reaction of the trans‐hyponitrito complex [Ru2(CO)4(μ‐η2‐ONNO)(μ‐H)(μ‐PtBu2)(μ‐dppen)] ( 1 , dppen = Ph2PC(=CH2)PPh2) with tetrafluorido boric acid afforded the new complex salt [Ru2(CO)4(μ‐η2‐ONNOH)(μ‐H)(μ‐PtBu2)(μ‐dppen)]BF4 ( 2 ) containing the monoprotonate hyponitrous acid as the ligand in the cationic complex. Complex 1 showed a nucleophilic reactivity towards the trimethyloxonium cation resulting in the monoester derivative of the hyponitrous acid [Ru2(CO)4(μ‐η2‐ONNOMe)(μ‐H)(μ‐PtBu2)(μ‐dppen)]BF4 ( 3 ). During heating of compound 2 in ethanol under reflux for a short time nitrous oxide was liberated affording unexpectedly a new tridentate 2, 2‐bis(diphenylphosphanyl)ethanolato ligand formed by an intramolecular attack of an intermediate hydroxido ligand towards the unsaturated carbon carbon double bond in the bridging dppen ligand. Thus the complex salt [Ru2(CO)4{μ‐η3‐OCH2CH(PPh2)2}(μ‐H)(μ‐PtBu2)]BF4 ( 4 ) was formed in good yields. The new compounds 2 , 3 , and 4 were characterized by spectroscopic means as well as their molecular structures were determined in the crystal.  相似文献   

13.
Carbon monoxide (CO) has recently been shown to impart beneficial effects in mammalian physiology and considerable research attention is now being directed toward metal–carbonyl complexes as a means of delivering CO to biological targets. Two ruthenium carbonyl complexes, namely trans‐dicarbonyldichlorido(4,5‐diazafluoren‐9‐one‐κ2N,N′)ruthenium(II), [RuCl2(C11H6N2O)(CO)2], (1), and fac‐tricarbonyldichlorido(4,5‐diazafluoren‐9‐one‐κN)ruthenium(II), [RuCl2(C11H6N2O)(CO)3], (2), have been isolated and structurally characterized. In the case of complex (1), the trans‐directing effect of the CO ligands allows bidentate coordination of the 4,5‐diazafluoren‐9‐one (dafo) ligand despite a larger bite distance between the N‐donor atoms. In complex (2), the cis disposition of two chloride ligands restricts the ability of the dafo molecule to bind ruthenium in a bidentate fashion. Both complexes exhibit well defined 1H NMR spectra confirming the diamagnetic ground state of RuII and display a strong absorption band around 300 nm in the UV.  相似文献   

14.
The cationic cluster complexes [Ru3(μ‐H)(μ‐κ2N,C‐L1 Me)(CO)10]+ ( 1 +; HL1 Me=N‐methylpyrazinium), [Ru3(μ‐H)(μ‐κ2N,C‐L2 Me)(CO)10]+ ( 2 +; HL2 Me=N‐methylquinoxalinium), and [Ru3(μ‐H)(μ‐κ2N,C‐L3 Me)(CO)10]+ ( 3 +; HL3 Me=N‐methyl‐1,5‐naphthyridinium), which contain cationic N‐heterocyclic ligands, undergo one‐electron reduction processes to become short lived, ligand‐centered, trinuclear, radical species ( 1 – 3 ) that end in the formation of an intermolecular C? C bond between the ligands of two such radicals, thus leading to neutral hexanuclear derivatives. These dimerization processes are selective, in the sense that they only occur through the exo face of the bridging ligands of trinuclear enantiomers of the same configuration, as they only afford hexanuclear dimers with rac structures (C2 symmetry). The following are the dimeric products that have been isolated by using cobaltocene as reducing agent: [Ru6(μ‐H)26‐κ4N2,C2‐(L1 Me)2}(CO)18] ( 5 ; from 1 +), [Ru6(μ‐H)26‐κ4N2,C2‐(L2 Me)2}(CO)18] ( 6 ; from 2 +), and [Ru6(μ‐H)24‐κ8N2,C6‐(L3 Me)2}(CO)18] ( 7 ; from 3 +). The structures of the final hexanuclear products depend on the N‐heterocyclic ligand attached to the starting materials. Thus, although both trinuclear subunits of 5 and 6 are face‐capped by their bridging ligands, the coordination mode of the ligand of 5 is different from that of the ligand of 6 . The trinuclear subunits of 7 are edge‐bridged by its bridging ligand. In the presence of moisture, the reduction of 3 + with cobaltocene also affords a trinuclear derivative, [Ru3(μ‐H)(μ‐κ2N,C‐L3′ Me)(CO)10] ( 8 ), whose bridging ligand (L3′ Me) results from the formal substitution of an oxygen atom for the hydrogen atom (as a proton) that in 3 + is attached to the C6 carbon atom of its heterocyclic ligand. The results have been rationalized with the help of electrochemical measurements and DFT calculations, which have also shed light on the nature of the odd‐electron species, 1 – 3 , and on the regioselectivity of their dimerization processes. It seems that the sort of coupling reactions described herein requires cationic complexes with ligand‐based LUMOs.  相似文献   

15.
Triply‐bridging bis‐{hydrido(borylene)} and bis‐borylene species of groups 6, 8 and 9 transition metals are reported. Mild thermolysis of [Fe2(CO)9] with an in situ produced intermediate, generated from the low‐temperature reaction of [Cp*WCl4] (Cp*=η5‐C5Me5) and [LiBH4?THF] afforded triply‐bridging bis‐{hydrido(borylene)}, [(μ3‐BH)2H2{Cp*W(CO)2}2{Fe(CO)2}] ( 1 ) and bis‐borylene, [(μ3‐BH)2{Cp*W(CO)2}2{Fe(CO)3}] ( 2 ). The chemical bonding analyses of 1 show that the B?H interactions in bis‐{hydrido (borylene)} species is stronger as compared to the M?H ones. Frontier molecular orbital analysis shows a significantly larger energy gap between the HOMO‐LUMO for 2 as compared to 1 . In an attempt to synthesize the ruthenium analogue of 1 , a similar reaction has been performed with [Ru3(CO)12]. Although we failed to get the bis‐{hydrido(borylene)} species, the reaction afforded triply‐bridging bis‐borylene species [(μ3‐BH)2{WCp*(CO)2}2{Ru(CO)3}] ( 2′ ), an analogue of 2 . In search for the isolation of bridging bis‐borylene species of Rh, we have treated [Co2(CO)8] with nido‐[(RhCp*)2(B3H7)], which afforded triply‐bridging bis‐borylene species [(μ3‐BH)2(RhCp*)2Co2(CO)4(μ‐CO)] ( 3 ). All the compounds have been characterized by means of single‐crystal X‐ray diffraction study; 1H, 11B, 13C NMR spectroscopy; IR spectroscopy and mass spectrometry.  相似文献   

16.
The title compound, {[N,N‐bis­(2‐pyridylmeth­yl)­amino]­ethanol‐κ3N,N′,N′′}tricarbonyl­rhenium(I) bromide methanol solvate, [Re(C14H17N3O)(CO)3]Br·CH4O, has been prepared in almost quantitative yield by reacting (NEt4)2[Re(CO)3Br3] with the ligand N,N‐bis­picol­yl‐2‐ethano­lamine in refluxing methanol. The X‐ray structure revealed that the Re(CO)3N3 coordination sphere is highly distorted from octa­hedral geometry and that the Re(CO)3 core is facial. The coordinated ligand forms two five‐membered rings, with the pyridine rings in a butterfly formation. The OH group is not involved in metal coordination. The packing of the mol­ecule shows a network of classical O⋯H—O and Br⋯H—O, and non‐classical Br⋯H—C and O⋯H—C hydrogen bonds between the methanol solvate mol­ecules, the metal complex cations and the bromide anions.  相似文献   

17.
通过双吡唑基甲基锂与二苯基乙烯基碘化锡的反应, 合成了桥头碳上带有乙烯基锡修饰的双吡唑甲烷配体。在回流的THF中这些乙烯基锡修饰的双吡唑甲烷配体(R3SnCHPz2, R3Sn为三乙烯基锡或二苯基乙烯基锡;Pz代表取代吡唑)与M(CO)5THF (M = Mo或W)反应产生杂双金属化合物R3SnCHPz2M(CO)3。在这些化合物中,一个乙烯基以h2方式配位到金属钼或钨上,双吡唑甲烷表现为一个三齿k3-(p,N,N)配体。(CH2=CH)3SnCH(3,5-Me2Pz)2W(CO)3和Ph2(CH2=CH)SnCH(3,5-Me2Pz)2W(CO)3与I2的反应也被研究。前者给出化合物CH2(3,5-Me2Pz)2W(CO)4,而后者随着有机锡的丢失产生四元金属杂环化合物CH(3,5-Me2Pz)2W(CO)3I。用PhSNa处理该四元金属杂环化合物导致碘负离子被取代,得到化合物CH(3,5-Me2Pz)2W(CO)3SPh。  相似文献   

18.
A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2] (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with LiBH4 ? thf at ?78 °C, followed by room‐temperature reaction with three equivalents of [Mn2(CO)10] yielded a manganese hexahydridodiborate compound [{(OC)4Mn}(η6‐B2H6){Mn(CO)3}2(μ‐H)] ( 1 ) and a triply bridged borylene complex [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2MnH(CO)3] ( 2 ). In a similar fashion, [Re2(CO)10] generated [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2ReH(CO)3] ( 3 ) and [(μ3‐BH)(Cp*Co)2(μ‐CO)2(μ‐H)Co(CO)3] ( 4 ) in modest yields. In contrast, [Ru3(CO)12] under similar reaction conditions yielded a heterometallic semi‐interstitial boride cluster [(Cp*Co)(μ‐H)3Ru3(CO)9B] ( 5 ). The solid‐state X‐ray structure of compound 1 shows a significantly shorter boron–boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using 1H, 11B, 13C NMR spectroscopy, mass spectrometry, and X‐ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B?H?Mn, a weak B?B?Mn interaction, and an enhanced B?B bonding in 1 .  相似文献   

19.
The reaction of [RhCl(η4‐Ph2R2C4CO)]2 (R=Ph, 2‐naphthyl) with the dimeric complexes [RuCl2(p‐cymene)]2 p‐cymene=1‐methyl‐4‐(1‐methylethyl)benzene, [RuCl2(1,3,5‐Et3C6H3)]2, [MCl2(Cp*)]2 (M=Rh, Ir; Cp*=1,2,3,4,5‐pentamethylcyclopenta‐2,4‐dien‐1‐yl), [RuCl2(CO)3]2, [RuCl2(dcypb)(CO)]2 (dcypb=butane‐1,4‐diylbis[dicyclohexylphosphine]), [(dppb)ClRu(μ‐Cl)2(μ‐OH2)RuCl(dppb)] (dppb=butane‐1,4‐diylbis[diphenylphosphine]), and [(dcypb)(N2)Ru(μ‐Cl)3RuCl(dcypb)] was investigated. In all cases, mixed, chloro‐bridged complexes were formed in quantitative yield (see 5 – 8, 9 – 16, 18, 19, 21 , and 22 ). The six new complexes 5, 8, 9, 13, 15 , and 22 were characterized by single‐crystal X‐ray analysis (Figs. 13).  相似文献   

20.
In the racemic crystals of (1S,2R)‐ or (1R,2S)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (I), the enantiomeric mol­ecules form a dimeric structure via the N—H?O cyclic hydrogen bond of the carbamoyl moieties. In the chiral crystals of (—)‐(1S,2R)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (II), the N—­H?O intermolecular hydrogen bond forms a zigzag chain around the twofold screw axis. The melting points and calculated densities of (I) and (II) are 446 and 396 K, and 1.481 and 1.445 Mg m?3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号