首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reported here is the step‐by‐step dearomatization of a highly aromatic polycyclic aromatic hydrocarbon (PAH), the hexa‐peri‐hexabenzocoronene (also called as “superbenzene”), to give a series of superbenzoquinones containing two, four, and six ketone groups. Different from traditional PAH‐based quinones, these superbenzoquinones show open‐shell multiradical character by rearomatization in the open‐shell forms as experimentally validated by X‐ray crystallographic analysis, NMR and ESR spectroscopy, and FT‐IR measurements, as well as theoretically supported by restricted active space spin‐flip calculations. These compounds exhibit structure‐ and molecular‐symmetry‐dependent optical, electrochemical, and magnetic properties.  相似文献   

2.
Reported here is the step‐by‐step dearomatization of a highly aromatic polycyclic aromatic hydrocarbon (PAH), the hexa‐peri‐hexabenzocoronene (also called as “superbenzene”), to give a series of superbenzoquinones containing two, four, and six ketone groups. Different from traditional PAH‐based quinones, these superbenzoquinones show open‐shell multiradical character by rearomatization in the open‐shell forms as experimentally validated by X‐ray crystallographic analysis, NMR and ESR spectroscopy, and FT‐IR measurements, as well as theoretically supported by restricted active space spin‐flip calculations. These compounds exhibit structure‐ and molecular‐symmetry‐dependent optical, electrochemical, and magnetic properties.  相似文献   

3.
The synthesis of 5,5′‐diamino‐3,3′‐azo‐1H‐1,2,4‐triazole ( 3 ) by reaction of 5‐acetylamino‐3‐amino‐1H‐1,2,4‐triazole ( 2 ) with potassium permanganate is described. The application of the very straightforward and efficient acetyl protection of 3,5‐diamino‐1H‐1,2,4‐triazole allows selective reactions of the remaining free amino group to form the azo‐functionality. Compound 3 is used as starting material for the synthesis of 5,5′‐dinitrimino‐3,3′‐azo‐1H‐1,2,4‐triazole ( 4 ), which subsequently reacted with organic bases (ammonia, hydrazine, guanidine, aminoguanidine, triaminoguanidine) to form the corresponding nitrogen‐rich triazolate salts ( 5 – 9 ). All substances were fully characterized by IR and Raman as well as multinuclear NMR spectroscopy, mass spectrometry, and differential scanning calorimetry. Selected compounds were additionally characterized by low temperature single‐crystal X‐ray diffraction measurements. The heats of formation of 4 – 9 were calculated by the CBS‐4M method to be 647.7 ( 4 ), 401.2 ( 5 ), 700.4 ( 6 ), 398.4 ( 7 ), 676.5 ( 8 ), and 1089.2 ( 9 ) kJ · mol–1. With these values as well as the experimentally determined densities several detonation parameters were calculated using both computer codes EXPLO5.03 and EXPLO5.04. In addition, the sensitivities of 5 – 9 were determined by the BAM drophammer and friction tester as well as a small scale electrical discharge device.  相似文献   

4.
Methenolone (17β‐hydroxy‐1‐methyl‐5α‐androst‐1‐en‐3‐one) misuse in doping control is commonly detected by monitoring the parent molecule and its metabolite (1‐methylene‐5α‐androstan‐3α‐ol‐17‐one) excreted conjugated with glucuronic acid using gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography mass spectrometry (LC‐MS) for the parent molecule, after hydrolysis with β‐glucuronidase. The aim of the present study was the evaluation of the sulfate fraction of methenolone metabolism by LC‐high resolution (HR)MS and the estimation of the long‐term detectability of its sulfate metabolites analyzed by liquid chromatography tandem mass spectrometry (LC‐HRMSMS) compared with the current practice for the detection of methenolone misuse used by the anti‐doping laboratories. Methenolone was administered to two healthy male volunteers, and urine samples were collected up to 12 and 26 days, respectively. Ethyl acetate extraction at weak alkaline pH was performed and then the sulfate conjugates were analyzed by LC‐HRMS using electrospray ionization in negative mode searching for [M‐H]? ions corresponding to potential sulfate structures (comprising structure alterations such as hydroxylations, oxidations, reductions and combinations of them). Eight sulfate metabolites were finally detected, but four of them were considered important as the most abundant and long term detectable. LC clean up followed by solvolysis and GC/MS analysis of trimethylsilylated (TMS) derivatives reveal that the sulfate analogs of methenolone as well as of 1‐methylene‐5α‐androstan‐3α‐ol‐17‐one, 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one and 16β‐hydroxy‐1‐methyl‐5α‐androst‐1‐ene‐3,17‐dione were the major metabolites in the sulfate fraction. The results of the present study also document for the first time the methenolone sulfate as well as the 3z‐hydroxy‐1β‐methyl‐5α‐androstan‐17‐one sulfate as metabolites of methenolone in human urine. The time window for the detectability of methenolone sulfate metabolites by LC‐HRMS is comparable with that of their hydrolyzed glucuronide analogs analyzed by GC‐MS. The results of the study demonstrate the importance of sulfation as a phase II metabolic pathway for methenolone metabolism, proposing four metabolites as significant components of the sulfate fraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
2,6‐Divinylpyridine‐appended anthracene derivatives flanked by two alkyl chains at the 9,10‐position of the core have been designed, synthesized, and characterized by NMR, MALDI‐TOF, FTIR, and single‐crystal XRD. These anthracene derivatives are able to recognize picric acid (2,4,6‐trinitrophenol, PA) selectively down to parts per billion (ppb) level in aqueous as well as nonaqueous medium. Fluorescence emission of these derivatives in solution is significantly quenched by adding trace amounts of PA, even in the presence of other competing analogues, such as 2,4‐dinitrophenol (2,4‐DNP), 4‐nitrophenol (NP), nitrobenzene (NB), benzoic acid (BA), and phenol (PH). The high sensitivity of these derivatives toward PA is considered as a combined effect of the proton‐induced intramolecular charge transfer (ICT) as well as electron transfer from the electron‐rich anthracene to the electron‐deficient PA. Moreover, visual detection of PA has been successfully demonstrated in the solid state by using different substrates.  相似文献   

6.
Here we report on the preparation of two hydrogen atom free 3,3′‐bi(1,2,4‐oxadiazole) derivatives. 5,5′‐Bis(fluorodinitromethyl)‐3,3′‐bi(1,2,4‐oxadiazole) was synthesised by fluorination of diammonium 5,5′‐bis(dinitromethanide)‐3,3′‐bi(1,2,4‐oxadiazole). For our previously reported analogue 5,5′‐bis(trinitromethyl)‐3,3′‐bi(1,2,4‐oxadiazole), a new synthetic route starting from new 3,3′‐bi(1,2,4‐oxadiazolyl)‐5,5′‐diacetic acid was developed. In this course also hitherto unknown 5,5′‐dimethyl‐3,3′‐bi(1,2,4‐oxadiazole) was isolated. The compounds were characterised by multinuclear NMR spectroscopy, IR and Raman spectroscopy, elemental analysis as well as mass spectrometry. X‐ray diffraction studies were performed and the crystal structures for the 5,5'‐dimethyl and 5,5'‐(fluorodinitromethyl) derivatives are reported. The energetic 5,5'‐(fluorodinitromethyl) and 5,5'‐(trinitromethyl) compounds do not contain any hydrogen atoms and show remarkable high densities. Furthermore, the thermal stabilities and sensitivities were determined by differential scanning calorimetry (DSC) and standardised impact and friction tests. The heats of formation were calculated by the atomisation method based on CBS‐4M enthalpies. With these values and the room‐temperature X‐ray densities, several detonation and propulsion parameters, such as the detonation velocity and pressure as well as the specific impulse of mixtures with aluminium, were computed using the EXPLO5 code.  相似文献   

7.
Novel poly(tetramethyl‐1,3‐silphenylenesiloxane) derivative with phenol moiety in the main chain, that is, poly(tetramethyl‐5‐hydroxy‐1,3‐silphenylenesiloxane) ( P1 ), was synthesized and the thermal properties were investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). P1 was obtained via deprotective hydrogenation of poly(tetramethyl‐5‐benzyloxy‐1,3‐silphenylenesiloxane) ( Pre‐P1 ) catalyzed by 10% palladium on charcoal as well as via direct polycondensation of 3,5‐bis(dimethylhydroxysilyl)phenol ( M2 ). Pre‐P1 was obtained by polycondensation of 1,3‐bis(dimethylhydroxysilyl)‐5‐benzyloxybenzene ( M1 ), catalyzed by 1,1,3,3‐tetramethylguanidinium 2‐ethylhexoate. M1 was prepared by the Grignard reaction using chlorodimethylsilane and 1,3‐dibromo‐5‐benzyloxybenzene followed by the hydrolysis catalyzed by 5% palladium on charcoal. M2 was prepared by deprotective hydrogenation of M1 catalyzed by 10% palladium on charcoal. The obtained P1 was soluble in common organic solvents such as tetrahydrofuran, chloroform, dichloromethane, toluene, and so forth as well as in highly polar solvents as ethanol and methanol in which poly(tetramethyl‐1,3‐silphenylenesiloxane) is insoluble. The glass transition temperature (Tg) of P1 was determined to be 40 °C from DSC, which was much higher than that of poly(tetramethyl‐1,3‐silphenylenesiloxane) (?52 °C), indicating that the intermolecular and/or intramolecular hydrogen bondings based on hydroxyl groups restricted the mobility of the main chain. The temperature at 5% weight loss (Td5) of P1 (393 °C) determined by TG was lower than that of poly(tetramethyl‐1,3‐silphenylenesiloxane) (ca. 500 °C), indicating that the phenol moieties decline the thermal stability; however, the obtained P1 would promise to be a new reactive‐polymer with phenolic–hydroxyl moieties to develop new functional materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 692–701, 2008  相似文献   

8.
With the aim of synthesizing biaryl compounds, several aromatic iodides were prepared by the deprotonative metalation of methoxybenzenes, 3‐substituted naphthalenes, isoquinoline, and methoxypyridines by using a mixed lithium/zinc‐TMP (TMP=2,2,6,6‐tetramethylpiperidino) base and subsequent iodolysis. The halides thus obtained, as well as commercial compounds, were cross‐coupled under palladium catalysis (e.g., Suzuki coupling with 2,4‐dimethoxy‐5‐pyrimidylboronic acid) to afford various representative biaryl compounds. Deprotometalation of the latter compounds was performed by using the lithium/zinc‐TMP base and evaluated by subsequent iodolysis. The outcome of these reactions has been discussed in light of the CH acidities of these substrates, as determined in THF solution by using the DFT B3LYP method. Except for in the presence of decidedly lower pKa values, the regioselectivities of the deprotometalation reactions tend to be governed by nearby coordinating atoms rather than by site acidities. In particular, azine and diazine nitrogen atoms have been shown to be efficient in inducing the reactions with the lithium/zinc‐TMP base at adjacent sites (e.g., by using 1‐(2‐methoxyphenyl)isoquinoline, 4‐(2,5‐dimethoxyphenyl)‐3‐methoxypyridine, or 5‐(2,5‐dimethoxyphenyl)‐2,4‐dimethoxypyrimidine as the substrate), a behavior that has already been observed upon treatment with lithium amides under kinetic conditions. Finally, the iodinated biaryl derivatives were involved in palladium‐catalyzed reactions.  相似文献   

9.
3,5‐Diamino‐1,2,4‐triazole ( 1 , guanozol) was protonated with diluted hydrochloric acid, nitric acid, as well as perchloric acid forming 3,5‐diamino‐1,2,4‐triazolium chloride hemihydrate ( 2 ), 3,5‐diamino‐1,2,4‐triazolium nitrate ( 3 ) and 3,5‐diamino‐1,2,4‐triazolium perchlorate ( 4 ), respectively. In a second step 4 reacted with potassium dinitramide forming 3,5‐diamino‐1,2,4‐triazolium dinitramide ( 5 ) and low soluble potassium perchlorate. Compounds 2 – 5 were characterized by low temperature single X‐ray diffraction, IR and Raman as well as multinuclear NMR spectroscopy, mass spectrometry and differential scanning calorimetry. The heats of formation of 1 – 5 were calculated by the CBS‐4M method to be 81.1 ( 1 ), 124.7 ( 2 ), –76.1 ( 3 ), –25.2 ( 4 ) and 138.7 ( 5 ) kJ·mol–1. With these values as well as the X‐ray densities several detonation parameters were calculated using both computer codes EXPLO5.03 and EXPLO5.04. In addition, the sensitivities of 1 – 5 were determined by the BAM drophammer and friction tester as well as a small scale electrical discharge device.  相似文献   

10.
A highly methanol‐selective vapochromic response has been realized in a NiII‐quinonoid complex, [Ni(HLMe)2] (H2LMe=4‐methylamino‐6‐methyliminio‐3‐oxocyclohexa‐1,4‐dien‐1‐olate) which exhibits a reversible structural transformation including a coordination geometrical change between the square‐planar and octahedral structure by the selective uptake of methanol vapor. This was accompanied by a remarkable color change between purple and orange, as well as temperature‐robust spin‐state switching in the solid state under ambient conditions. It is remarkable that the properties are derived by the fine structural modification of the quinonoid ligand such as methyl or ethyl analogues. Such a system has high potential for applications in memory devices as well as chemical sensors and smart responsive materials.  相似文献   

11.
Recently, the vacuum electrospray droplet impact (V‐EDI) was developed as a cluster ion beam source in our laboratory. In this work, V‐EDI was applied to polymers [polyimide (PI) and polycarbonate (PC)] and metal/polymer multilayer samples (Au/PI and Au/PC). We compared the etching performance of V‐EDI with that obtained by the conventional atmospheric‐pressure EDI (A‐EDI). The nonselective etching was observed for organic and also inorganic samples by V‐EDI as by A‐EDI. Etching rates for the metal and polymer analysis by V‐EDI were almost the same as those observed by A‐EDI. The interlayer components were clearly observed by V‐EDI for multilayer samples of Au and synthetic polymers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Novel elastomeric A‐B‐A triblock copolymers were successfully synthesized in a new two‐step process: controlled ring‐opening polymerization of the cyclic ether–ester 1,5‐dioxepan‐2‐one as the amorphous middle block (B‐block) followed by addition and polymerization of the two semicrystalline L ‐lactide blocks (A‐block). A 1,1,6,6‐tetra‐n‐butyl‐1,6‐distanna‐2,5,7,10‐tetraoxacyclodecane initiator system was utilized and the reaction was performed in chloroform at 60 °C. A good control of the synthesis was obtained, resulting in well defined triblock copolymers. The molecular weight and chemical composition were easily adjusted by the monomer‐to‐initiator ratio. The triblock copolymers formed exhibited semicrystallinity up to a content of 1,5‐dioxepan‐2‐one as high as 89% as determined by differential scanning calorimetry. WAXS investigation of the triblock copolymers showed a crystal structure similar to that of the pure poly(L ‐lactide). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1774–1784, 2000  相似文献   

13.
Without the conventional polymer‐based liquid crystal (LC) alignment process, a newly synthesized dual photo‐functionalized amphiphile (abbreviated as ADMA1) was successfully applied as a robust photo‐reversible LC alignment layer by self‐assembly and photo‐polymerization. The LC alignment layer constructed by directly adding dual photo‐functionalized amphiphiles into LC media significantly cuts the manufacturing cost as well as opens new doors for the fabrication of novel electro‐optical devices.  相似文献   

14.
Novel polyfluorene copolymers alternately having an 1,3,4‐oxadiazole unit in the main chain were prepared by both one‐step and two‐step methods for polyoxadiazole synthesis. They displayed highly efficient blue photoluminescence, the properties of which were affected by the extent of conjugation and the changes in the electron density by a side chain. An electrochemical analysis of the polymers using cyclic voltammetry suggested that they could be used as electron‐transport/hole‐blocking materials as well as blue emission materials for polymer light‐emitting diodes. A simple double‐layer device consisting of poly(N‐vinylcarbazole) as a hole‐transport layer and poly[(9,9′‐didodecylfluorene‐2,7‐diyl)‐alt‐((1,4‐bis(1,3,4‐oxadiazole)‐2,5‐di(2‐ethylhexyloxy)phenylene)‐5,5′‐diyl)] as an emission layer exhibited narrow blue electroluminescence with a maximum at 430 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1058–1068, 2004  相似文献   

15.
The synthesis of three key intermediates of the hydrogenation pathway in the hydrodesulfurization of 4,6‐dimethyldibenzothiophene (4,6‐DM‐DBT; 1 ) is described. The hydrogenated derivatives 1,2,3,4‐tetrahydro‐4,6‐dimethyldibenzothiophene (= 4,6‐dimethyl‐1,2,3,4‐tetrahydrodibenzothiophene; 4,6‐DM‐TH‐DBT; 2 ), 1,2,3,4,4a,9b‐hexahydro‐4,6‐dimethyldibenzothiophene (= 4,6‐dimethyl‐1,2,3,4,4a,9b‐hexahydrodibenzothiophene; 4,6‐DM‐HH‐DBT; 3 ), and dodecahydro‐4,6‐dimethyldibenzothiophene (= 4,6‐dimethylperhydrodibenzothiophene; 4,6‐DM‐PH‐DBT; 4 ) were prepared by direct hydrogenation of 1 . The reactions were carried out in continuous and batch reactors by using metal sulfide as well as noble‐metal catalysts. The influence of the reaction conditions on the formation of the products and the distribution of their stereoisomers was studied in detail. The isomers of the main products were isolated and characterized by NMR, GC/MS/MS, and X‐ray crystal‐structure diffractometry.  相似文献   

16.
A novel acrylic monomer‐bearing carbazole chromophore, 3‐methacrylamide‐9‐ethyl‐carbazole and its model compound 3‐isobutyramide‐9‐ethylcarbazole were synthesized by reaction of 3‐amino‐9‐ethyl carbazole and the corresponding acyl chloride in the presence of triethylamine. It can be polymerized easily by using azo‐bisisobutyronitrile as an initiator or photopolymerized without any sensitizer. The photochemical behavior of 3‐methacrylamide‐9‐ethyl‐carbazole, its polymer and 3‐isobutyramide‐9‐ethylcarbazole were investigated by recording the fluorescence spectra in N,N‐dimethylformamide. It was found that the fluorescence intensity of the monomer is dramatically lower than those of its polymer and the model compound in the same chromophore concentration. This phenomenon, termed as the ‘structural self‐quenching effect’, was commonly observed for acrylic monomers bearing chromophore moieties and ascribed to the coexistence of the electron‐donating chromophore and the electron‐accepting double bond within one molecule. The strong fluorescence of the polymer can be quenched by adding electron‐deficient monomers having no chromophore moieties such as methyl methacrylate and acrylonitrile, and the Stern–Volmer constants were determined. It is observed that the higher the electron deficiencies of the quenchers, the higher the Stern–Volmer constants, implying a stronger quenching effect.Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
An amino‐acid‐based (11‐(4‐(pyrene‐1‐yl)butanamido)undecanoic acid) self‐repairing hydrogel is reported. The native hydrogel, as well as hybrid hydrogels, have been thoroughly characterized by using various microscopic techniques, including transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, fluorescence spectroscopy, FTIR spectroscopy, X‐ray diffraction, and by using rheological experiments. The native hydrogel exhibited interesting fluorescence properties, as well as a self‐healing property. Interestingly, the self‐healing, thixotropy, and stiffness of the native hydrogel can be successfully modulated by incorporating carbon‐based nanomaterials, including graphene, pristine single‐walled carbon nanotubes (Pr‐SWCNTs), and both graphene and Pr‐SWCNTs, within the native gel system. The self‐recovery time of the gel was shortened by the inclusion of reduced graphene oxide (RGO), Pr‐SWCNTs, or both RGO and Pr‐SWCNTs. Moreover, hybrid gels that contained RGO and/or Pr‐SWCNTs exhibited interesting semiconducting behavior.  相似文献   

18.
An aluminum‐rich MSE‐type zeolite (Si/Al is as small as 7) has been successfully synthesized in a remarkably short crystallization period of only 3 days by the hydrothermal conversion of an FAU‐type zeolite, presumably by the assembly of four‐membered‐ring (4‐R) aluminosilicate oligomers supplied by the double 6‐R (D6R) components of the FAU framework with the aid of the structure‐directing agents and seed crystals. The dealuminated version of the aluminum‐rich MSE‐type zeolite showed a high level of coke durability in addition to a significant yield of propylene, which indicates that this novel zeolitic material is suitable for industrial applications as a highly selective and long‐lived catalyst.  相似文献   

19.
《Electroanalysis》2003,15(22):1795-1798
Chiroselective binding sites have been created on thin gold films by application of the spreader‐bar approach. Impedometric techniques and surface plasmon resonance were applied to detect binding. (R)‐(+)‐1,1′‐Binaphthyl‐2,2′‐diol (R‐BNOH) and (S)‐(?)‐1,1′‐binaphthyl‐2,2′‐diol (S‐BNOH) were used as model analytes. The artificial receptors were prepared by co‐adsorption of 16‐mercaptohexadecane (matrix) with a thiol‐modified chiral selector (template). The conjugates of D ,L ‐thioctic acid and (R)‐(+)‐ or (S)‐(?)‐1,1′‐binaphthyl‐2,2′‐diamine were used as templates. Different concentration ratios of the matrix and template were tested. No chiral selectivity of surfaces formed by either the matrix or the template alone was observed. The use of alkylthiols shorter than 16‐mercaptohexadecane led to the formation of surfaces with no chiral selectivity. The gold electrodes coated by the spreader‐bar technique displayed an enantioselectivity of up to 4.76 or up to 2.55 as measured by the capacitive and SPR methods, respectively.  相似文献   

20.
It is demonstrated that bifunctionalized polythiophenes involving thiol and azide end‐functional groups can be synthesized by chain‐growth Suzuki‐Miyaura type polymerization. The bifunctionalized polythiophenes are successfully characterized by 1H NMR, gel permeation chromatography (GPC), and matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF). Furthermore, the azide end‐group reacts with DNA via “click chemistry” to form a polythiophene/DNA hybrid structure, which is characterized by ESI‐MS. The described synthetic approaches will lead to the synthesis of novel multi‐block copolymers as well as biomolecule‐based conjugated polymer structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号