首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Organic solar cells (OSCs) have gained attention of the scientific community from the last decade and are now considered as one of the most important source for low‐cost power production. The recent rapid progress in non‐fullerene acceptors in BHJ indicates that they have potential to compete with fullerene‐based BHJ OSCs. The present review addressed the systematic comparison among various acceptors (diketopyrrolopyrrole (DPP), benzothiadiazole (BTD) and perylenediimide (PDI) based acceptors) in order to design and improve the performance of small molecules based non‐fullerene acceptors. This review focuses on the performance of small molecule non‐fullerene acceptors based on DPP, BTD and PDI for OSCs with respect to the change in molecular structures, energy levels, and PCE. A systematic comparison on the effect of molecular architecture, side chains on their performance is provided with the intention of evaluating the challenge to make highly efficient acceptors for the next generation organic photovoltaics.  相似文献   

2.
The design of narrow band gap (NBG) donors or acceptors and their application in organic solar cells (OSCs) are of great importance in the conversion of solar photons to electrons. Limited by the inevitable energy loss from the optical band gap of the photovoltaic material to the open‐circuit voltage of the OSC device, the improvement of the power conversion efficiency (PCE) of NBG‐based OSCs faces great challenges. A novel acceptor–donor–acceptor structured non‐fullerene acceptor is reported with an ultra‐narrow band gap of 1.24 eV, which was achieved by an enhanced intramolecular charge transfer (ICT) effect. In the OSC device, despite a low energy loss of 0.509 eV, an impressive short‐circuit current density of 25.3 mA cm−2 is still recorded, which is the highest value for all OSC devices. The high 10.9 % PCE of the NBG‐based OSC demonstrates that the design and application of ultra‐narrow materials have the potential to further improve the PCE of OSC devices.  相似文献   

3.
The design of narrow band gap (NBG) donors or acceptors and their application in organic solar cells (OSCs) are of great importance in the conversion of solar photons to electrons. Limited by the inevitable energy loss from the optical band gap of the photovoltaic material to the open‐circuit voltage of the OSC device, the improvement of the power conversion efficiency (PCE) of NBG‐based OSCs faces great challenges. A novel acceptor–donor–acceptor structured non‐fullerene acceptor is reported with an ultra‐narrow band gap of 1.24 eV, which was achieved by an enhanced intramolecular charge transfer (ICT) effect. In the OSC device, despite a low energy loss of 0.509 eV, an impressive short‐circuit current density of 25.3 mA cm−2 is still recorded, which is the highest value for all OSC devices. The high 10.9 % PCE of the NBG‐based OSC demonstrates that the design and application of ultra‐narrow materials have the potential to further improve the PCE of OSC devices.  相似文献   

4.
有机小分子电子受体材料的侧基能够影响异质结有机太阳能电池的给体/受体匹配和器件性能。我们设计并合成了一个硼原子带有噻吩侧基的有机硼小分子(MBN-Th)。该分子的LUMO离域在整个骨架上,HOMO定域在中心核上,其独特的电子结构使该分子具有两个强的吸收峰(波长分别为490和726nm),因此分子具有宽的吸收光谱和强的太阳光吸收能力。与苯基侧基相比,噻吩侧基使分子的HOMO能级下移0.1 eV,LUMO能级保持不变,进而引起分子带隙减小和吸收光谱蓝移20nm。基于该有机硼小分子受体材料的异质结有机太阳能电池,实现了4.21%的能量转化效率和300–850nm的宽响应光谱。实验结果表明,硼原子上的噻吩侧基是调控有机硼小分子光电性质的有效方法,可以用于有机硼小分子受体材料的设计。  相似文献   

5.
All‐polymer solar cells (all‐PSCs) offer unique morphology stability for the application as flexible devices, but the lack of high‐performance polymer acceptors limits their power conversion efficiency (PCE) to a value lower than those of the PSCs based on fullerene derivative or organic small molecule acceptors. We herein demonstrate a strategy to synthesize a high‐performance polymer acceptor PZ1 by embedding an acceptor–donor–acceptor building block into the polymer main chain. PZ1 possesses broad absorption with a low band gap of 1.55 eV and high absorption coefficient (1.3×105 cm−1). The all‐PSCs with the wide‐band‐gap polymer PBDB‐T as donor and PZ1 as acceptor showed a record‐high PCE of 9.19 % for the all‐PSCs. The success of our polymerization strategy can provide a new way to develop efficient polymer acceptors for all‐PSCs.  相似文献   

6.
Two polymers containing(E)-2,3-bis(thiophen-2-yl)acrylonitrile(CNTVT) as a donor unit, perylene diimide(PDI) or naphthalene diimide(NDI) as an acceptor unit, are synthesized by the Stille coupling copolymerization, and used as the electron acceptors in the solution-processed organic solar cells(OSCs). Both polymers exhibit broad absorption in the region of 300–850 nm. The LUMO energy levels of the resulted polymers are ca. –3.93 eV and the HOMO energy levels are –5.97 and –5.83 eV. In the binary blend OSCs with PTB7-Th as a donor, PDI polymer yields the power conversion efficiency(PCE) of up to 1.74%, while NDI polymer yields PCE of up to 3.80%.  相似文献   

7.
《化学:亚洲杂志》2017,12(16):2052-2056
The incorporation of fluorine atoms in organic semiconducting materials has attracted much attention recently due to its unique function to manipulate the molecular packing, film morphology and molecular energy levels. In this work, two perylenediimide (PDI) derivatives FPDI‐CDTph and FPDI‐CDTph2F were designed and synthesized to investigate the impact of fluorination on non‐fullerene acceptors. Both FPDI‐CDTph and FPDI‐CDTph2F exhibited strong and broad absorption profiles, suitable lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, and good electron transport ability. Compared with FPDI‐CDTph, the fluorinated acceptor (FPDI‐CDTph2F) afforded an optimal bulk heterojunction morphology with an interconnected and nanoscale phase separated structure that allowed more efficient exciton dissociation and balanced charge transport. Consequently, organic solar cells based on FPDI‐CDTph2F showed a much higher power conversion efficiency (PCE) of 6.03 % than that of FPDI‐CDTph based devices (4.10 %) without any post‐fabrication treatment.  相似文献   

8.
Non‐fullerene all‐small‐molecule organic solar cells (NFSM‐OSCs) have shown potential as OSCs, owing to their high purity, easy synthesis and good reproducibility. However, challenges in the modulation of phase separation morphology have limited their development. Herein, two novel small molecular donors, BTEC‐1F and BTEC‐2F, derived from the small molecule DCAO3TBDTT, are synthesized. Using Y6 as the acceptor, devices based on non‐fluorinated DCAO3TBDTT showed an open circuit voltage (Voc) of 0.804 V and a power conversion efficiency (PCE) of 10.64 %. Mono‐fluorinated BTEC‐1F showed an increased Voc of 0.870 V and a PCE of 11.33 %. The fill factor (FF) of di‐fluorinated BTEC‐2F‐based NFSM‐OSC was improved to 72.35 % resulting in a PCE of 13.34 %, which is higher than that of BTEC‐1F (61.35 %) and DCAO3TBDTT (60.95 %). To our knowledge, this is the highest PCE for NFSM‐OSCs. BTEC‐2F had a more compact molecular stacking and a lower crystallinity which enhanced phase separation and carrier transport.  相似文献   

9.
One of the most important challenges that hinders the power conversion efficiencies (PCEs) of organic solar cells (OSCs) is the modest open‐circuit voltages (VOC) due to large energy losses. The large driving force during for charge generation and the non‐radiative recombination are the main causes of energy losses. To maximize the VOC of OSCs, herein, we modulate the end‐groups and design a non‐fullerene acceptor ITCCM‐O, which shows a bandgap of 2.0 eV. By blending a polymer donor named J52, the device demonstrates a PCE of 5.5% with an outstanding VOC of 1.34 V, which is the highest value for single‐junction OSCs over 5% PCEs. The high VOC is benefited from 1) the negligible driving force for charge transfer, and 2) the suppressed non‐radiative recombination loss, as low as 0.22 V.  相似文献   

10.
半透明有机太阳能电池以其独特的光电特性在建筑集成光伏上具有广阔的应用前景。非富勒烯小分子受体近几年发展十分迅速。其中,基于非富勒烯小分子受体的半透明有机太阳能电池具有较高的光电转换效率和平均可见光透过率,因而得到了广泛关注。本文总结了近几年来非富勒烯受体型半透明有机太阳能电池的最新研究进展,探究活性层材料设计及器件构型优化对半透明有机太阳能电池的影响,希望为半透明有机太阳能电池在今后研究中新材料体系的优选提供一定的参考。  相似文献   

11.
Halogenation is a very efficient chemical modification method to tune the molecular energy levels, absorption spectra and molecular packing of organic semiconductors. Recently, in the field of organic solar cells(OSCs), both fluorine-and chlorinesubstituted photovoltaic materials, including donors and acceptors, demonstrated their great potentials in achieving high power conversion efficiencies(PCEs), raising a question that how to make a decision between fluorination and chlorination when designing materials. Herein, we systemically studied the impact of fluorination and chlorination on the properties of resulting donors(PBDB-T-2 F and PBDB-T-2 Cl) and acceptors(IT-4 F and IT-4 Cl). The results suggest that all the OSCs based on different donor and acceptor combinations can deliver good PCEs around 13%–14%. Chlorination is more effective than fluorination in downshifting the molecular energy levels and broadening the absorption spectra. The influence of chlorination and fluorination on the crystallinity of the resulting materials is dependent on their introduction positions. As chlorination has the advantage of easy synthesis, it is more attractive in designing low-cost photovoltaic materials and therefore may have more potential in largescale applications.  相似文献   

12.
Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors.  相似文献   

13.
High efficiency organic solar cells (OSCs) based on A-DA′D-A type small molecule acceptors (SMAs) were mostly fabricated by toxic halogenated solvent processing, and power conversion efficiency (PCE) of the non-halogenated solvent processed OSCs is mainly restricted by the excessive aggregation of the SMAs. To address this issue, we developed two vinyl π-spacer linking-site isomerized giant molecule acceptors (GMAs) with the π-spacer linking on the inner carbon (EV-i) or out carbon (EV-o) of benzene end group of the SMA with longer alkyl side chains (ECOD) for the capability of non-halogenated solvent-processing. Interestingly, EV-i possesses a twisted molecular structure but enhanced conjugation, while EV-o shows a better planar molecular structure but weakened conjugation. The OSC with EV-i as acceptor processed by the non-halogenated solvent o-xylene (o-XY) demonstrated a higher PCE of 18.27 % than that of the devices based on the acceptor of ECOD (16.40 %) or EV-o (2.50 %). 18.27 % is one of the highest PCEs among the OSCs fabricated from non-halogenated solvents so far, benefitted from the suitable twisted structure, stronger absorbance and high charge carrier mobility of EV-i. The results indicate that the GMAs with suitable linking site would be the excellent candidates for fabricating high performance OSCs processed by non-halogenated solvents.  相似文献   

14.
Indacenodithiophene (IDT) derivatives are kinds of the most representative and widely used cores of small molecule acceptors (SMAs) in organic solar cells (OSCs). Here we systematically investigate the influence of end-group fluorination density and position on the photovoltaic properties of the IDT-based SMAs IDIC-nF (n = 0, 2, 4). The absorption edge of IDIC-nF red-shifts with the π-π stacking and crystallinity improvement, and their electronic energy levels downshift with increasing n. Due to the advantages of Jsc and FF as well as acceptable Voc, the difluorinated IDIC-2F acceptor based OSCs achieve the highest power conversion efficiency (PCE) of 13%, better than the OSC devices based on IDIC and IDIC-4F as acceptors. And the photovoltaic performance of the PTQ10: IDIC-2F OSCs is insensitive to the active layer thickness: PCE still keep high values of 12.00% and 11.46% for the devices with active layer thickness of 80 and 354 nm, respectively. This work verifies that fine and delicate modulation of the SMAs molecular structure could optimize photovoltaic performance of the corresponding OSCs. Meanwhile, the thickness-insensitivity property of the OSCs has potential for large-scale and printable fabrication technology.  相似文献   

15.
Triplet materials have been employed to achieve high‐performing organic solar cells (OSCs) by extending the exciton lifetime and diffusion distances, while the triplet non‐fullerene acceptor materials have never been reported for bulk heterojunction OSCs. Herein, for the first time, three triplet molecular acceptors based on tellurophene with different degrees of ring fusing were designed and synthesized for OSCs. Significantly, these molecules have long exciton lifetime and diffusion lengths, leading to efficient power conversion efficiency (7.52 %), which is the highest value for tellurophene‐based OSCs. The influence of the extent of ring fusing on molecular geometry and OSCs performance was investigated to show the power conversion efficiencies (PCEs) continuously increased along with increasing the extent of ring fusing.  相似文献   

16.
Small molecular acceptors (SMAs) BTC‐2F and BTH‐2F, based on heptacyclic benzodi(cyclopentadithiophene) electron‐donating core (CBT) with chlorinated‐thienyl conjugated and thienyl conjugated side chains, respectively, are designed and synthesized. Compared with non‐chlorine acceptor BTH‐2F, BTC‐2F exhibits slightly blue‐shifted absorption spectra, similar the lowest unoccupied molecular orbital (LUMO) (–3.91 eV), deeper highest occupied molecular orbital (HOMO) energy level and higher electron mobility than that of BTH‐2F. PM6, a wide bandgap polymer, is selected as the donor material to construct bulk heterojunction polymer solar cells processed with nonhalogenated solvent toluene. The optimized PM6:BTC‐2F‐based device presents a 12.9% power conversion efficiency (PCE), while the PCE of PM6:BTH‐2F‐based device is only 11.3%. The results suggest that it is an effective strategy to optimize the photoelectric properties of SMAs by incorporating chlorine atom into the conjugated side chains.  相似文献   

17.
For over two decades bulk‐heterojunction polymer solar cell (BHJ‐PSC) research was dominated by donor:acceptor BHJ blends based on polymer donors and fullerene molecular acceptors. This situation has changed recently, with non‐fullerene PSCs developing very rapidly. The power conversion efficiencies of non‐fullerene PSCs have now reached over 15 %, which is far above the most efficient fullerene‐based PSCs. Among the various non‐fullerene PSCs, all‐polymer solar cells (APSCs) based on polymer donor‐polymer acceptor BHJs have attracted growing attention, due to the following attractions: 1) large and tunable light absorption of the polymer donor/polymer acceptor pair; 2) robustness of the BHJ film morphology; 3) compatibility with large scale/large area manufacturing; 4) long‐term stability of the cell to external environmental and mechanical stresses. This Minireview highlights the opportunities offered by APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.  相似文献   

18.
The development of organic electron acceptor materials is one of the key factors for realizing high-performance organic solar cells (OSCs). Nonfullerene electron acceptors, compared to traditional fullerene acceptor materials, have gained much impetus owing to their better optoelectronic tunabilities and lower cost, as well as higher stability. Therefore, 5 three-dimensional (3D) cross-shaped acceptor materials having a spirobifullerene core flanked with 2,1,3-benzothiadiazole are designed from a recently synthesized highly efficient acceptor molecule SF(BR) 4 and are investigated in detail with regard to their use as acceptor molecules in OSCs. The density functional theory (DFT) and time-dependent DFT (TDDFT) calculations have been performed for the estimation of frontier molecular orbital (FMO) analysis, density of states analysis, reorganization energies of electron and hole, dipole moment, open-circuit voltage, photo-physical characteristics, and transition density matrix analysis. In addition, the structure-property relationship is studied, and the influence of end-capped acceptor modifications on photovoltaic, photo-physical, and electronic properties of newly selected molecules ( H1-H5 ) is calculated and compared with reference ( R ) acceptor molecule SF(BR) 4 . The structural tailoring at terminals was found to effectively tune the FMO band gap, energy levels, absorption spectra, open-circuit voltage, reorganization energy, and binding energy value in selected molecules H1 to H5 . The 3D cross-shaped molecules H1 to H5 suppress the intermolecular aggregation in PTB7-Th blend, which leads to high efficiency of acceptor material H1 to H5 in OSCs. Consequently, better optoelectronic properties are achieved from designed molecules H1 to H5 . It is proposed that the conceptualized molecules are superior than highly efficient spirobifullerene core-based SF(BR) 4 acceptor molecules and, thus, are recommended to experiments for future developments of highly efficient solar cells.  相似文献   

19.
《中国化学》2018,36(6):491-494
Revealing the charge generation is a crucial step to understand the organic photovoltaics. Recent development in non‐fullerene organic solar cells (OSCs) indicates efficient charge separation even with negligible energetic offset between the donor and acceptor materials. These new findings trigger a critical question concerning the charge separation mechanism in OSCs, traditionally believed to result from sufficient energetic offset between the polymer donor and fullerene acceptor. We propose a new mechanism, which involves the molecular electrostatic potential, to explain efficient charge separation in non‐fullerene OSCs. Together with the new mechanism, we demonstrate a record efficiency of ~12% for systems with negligible energetic offset between donor and acceptor materials. Our analysis also rationalizes different requirement of the energetic offset between fullerene‐based and non‐fullerene OSCs, and paves the way for further design of OSC materials with both high photocurrent and high photovoltage at the same time.  相似文献   

20.
综述了以p-型共轭聚合物为给体、n-型有机半导体为受体的非富勒烯聚合物太阳电池光伏材料最新研究进展,包括n-型共轭聚合物和可溶液加工小分子n-型有机半导体(n-OS)受体光伏材料,以及与之匹配的p-型共轭聚合物给体光伏材料.介绍的n-型共轭聚合物受体光伏材料包括基于苝酰亚胺(BDI)、萘酰亚胺(NDI)以及新型硼氮键连受体单元的D-A共聚物受体光伏材料,目前基于聚合物给体(J51)和聚合物受体(N2200)的全聚合物太阳电池的能量转换效率最高达到8.26%.n-OS小分子受体光伏材料包括基于BDI和NDI单元的有机分子、基于稠环中心给体单元的A-D-A型窄带隙有机小分子受体材料等.给体光伏材料包括基于齐聚噻吩和苯并二噻吩(BDT)给体单元的D-A共聚物,重点介绍与窄带隙A-D-A结构小分子受体吸收互补的、基于噻吩取代BDT单元的中间带隙二维共轭聚合物给体光伏材料.使用中间带隙的p-型共轭聚合物为给体、窄带隙A-D-A结构有机小分子为受体的非富勒烯聚合物太阳电池能量转换效率已经突破12%,展示了光明的前景.最后对非富勒烯聚合物太阳电池将来的发展进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号