首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol?1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.  相似文献   

2.
Polymerization‐induced self‐assembly (PISA) has become the preferred method of preparing self‐assembled nano‐objects based on amphiphilic block copolymers. The PISA methodology has also been extended to the realization of colloidal nanocomposites, such as polymer–silica hybrid particles. In this work, we compare two methods to prepare nanoparticles based on self‐assembly of block copolymers bearing a core‐forming block with a reactive alkoxysilane moiety (3‐(trimethoxysilyl)propyl methacrylate, MPS), namely (i) RAFT emulsion polymerization using a hydrophilic macroRAFT agent and (ii) solution‐phase self‐assembly upon slow addition of a selective solvent. Emulsion polymerization under both ab initio and seeded conditions were studied, as well the use of different initiating systems. Effective and reproducible chain extension (and hence PISA) of MPS via thermally initiated RAFT emulsion polymerization was compromised due to the hydrolysis and polycondensation of MPS occurring under the reaction conditions employed. A more successful approach to block copolymer self‐assembly was achieved via polymerization in a good solvent for both blocks (1,4‐dioxane) followed by the slow addition of water, yielding spherical nanoparticles that increased in size as the length of the solvophobic block was increased. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 420–429  相似文献   

3.
We report the straightforward, time‐efficient synthesis of radical core–shell nanoparticles (NPs) by polymerization‐induced self‐assembly. A nitroxide‐containing hydrophilic macromolecular precursor was prepared by ring‐opening metathesis copolymerization of norbornenyl derivatives of TEMPO and oligoethylene glycol and was chain‐extended in situ with norbornene in ethanolic solution, leading to simultaneous amphiphilic block copolymer formation and self‐assembly. Without any intermediate purification from the monomers to the block copolymers, radical NPs with tunable diameters ranging from 10 to 110 nm are obtained within minutes at room temperature. The high activity of the radical NPs as chemoselective and homogeneous, yet readily recyclable catalysts is demonstrated through oxidation of a variety of alcohols and recovery by simple centrifugation. Furthermore, the NPs show biocompatibility and antioxidant activity in vitro.  相似文献   

4.
Polymerization‐induced self‐assembly (PISA) enables the scalable synthesis of functional block copolymer nanoparticles with various morphologies. Herein we exploit this versatile technique to produce so‐called “high χ–low N” diblock copolymers that undergo nanoscale phase separation in the solid state to produce sub‐10 nm surface features. By varying the degree of polymerization of the stabilizer and core‐forming blocks, PISA provides rapid access to a wide range of diblock copolymers, and enables fundamental thermodynamic parameters to be determined. In addition, the pre‐organization of copolymer chains within sterically‐stabilized nanoparticles that occurs during PISA leads to enhanced phase separation relative to that achieved using solution‐cast molecularly‐dissolved copolymer chains.  相似文献   

5.
Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2‐methylene‐1,3‐dioxepane (MDO) using a macro‐xanthate CTA, poly(N‐vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)‐b‐poly(MDO‐co‐VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self‐assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro‐CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2699–2710  相似文献   

6.
Amphiphilic block copolymers containing β‐lactam groups on the polyisoprene block were synthesized from poly(isoprene‐b‐ethylene oxide) (IEO) diblock copolymer precursors, prepared by anionic polymerization. β‐Lactam functionalization was achieved via reaction of the polyisoprene (PI) block with chlorosulfonyl isocyanate and subsequent reduction. The resulting block copolymers were molecularly characterized by SEC, FTIR, and NMR spectroscopies and DSC. Functionalization was found to proceed in high yields, altering the solubility properties of the PI block and those of the functionalized diblocks. Hydrogen bond formation is assumed to be responsible for the decreased crystallinity of the poly(ethylene oxide) block (PEO) in the bulk state as indicated by DSC measurements. The self‐assembly behavior of the β‐lactam functionalized poly(isoprene‐b‐ethylene oxide) copolymers (LIEO) in aqueous solutions was studied by dynamic light scattering (DLS), static light scattering (SLS), fluorescence spectroscopy, and atomic force microscopy (AFM). Nearly spherical loose aggregates were formed by the LIEO block copolymers, having lower aggregation numbers and higher cmc values compared to the IEO precursors, as a result of the increased polarity of the β‐lactam rings incorporated in the PI blocks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 24–33, 2010  相似文献   

7.
Solution self‐assembly of amphiphilic “rod‐coil” copolymers, especially linear block copolymers and graft copolymers (also referred to as polymer brushes), has attracted considerable interest, as replacing one of the blocks of a coil‐coil copolymer with a rigid segment results in distinct self‐assembly features compared with those of the coil‐coil copolymer. The unique interplay between microphase separation of the rod and coil blocks with great geometric disparities can lead to the formation of unusual morphologies that are distinctly different from those known for coil‐coil copolymers. This review presents the recent achievements in the controlled self‐assembly of rod‐coil linear block copolymers and graft copolymers in solution, focusing on copolymer systems containing conjugated polymers, liquid crystalline polymers, polypeptides, and polyisocyanates as the rod segments. The discussions concentrate on the principle of controlling over the morphology of rod‐coil copolymer assemblies, as well as their distinctive optical and optoelectronic properties or biocompatibility and stimuli‐responsiveness, which afford the assemblies great potential as functional materials particularly for optical, optoelectronic and biological applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1459–1477  相似文献   

8.
Nanoparticles formed from amphiphilic block copolymers can be used as drug delivery vehicles for hydrophilic therapeutics. Poly(ethylene glycol) (PEG)‐peptide copolymers were investigated for their self‐assembling properties and as consequent potential delivery systems. Mono‐ and dihydroxy PEGs were functionalized with a pentavaline sequence bearing Fmoc end groups. The molecular weight of the PEG component was varied to evaluate copolymer size and block number. These di‐ and tri‐block copolymers readily self‐assemble in aqueous solution with critical aggregation concentrations (CACs) of 0.46–16.29 μM. At concentrations above the CAC, copolymer solutions form spherical assemblies. Dynamic light scattering studies indicate these aggregates have a broad size distribution, with average diameters between 33 and 127 nm. The copolymers are comprised β‐conformations that are stable up to 80 °C, as observed by circular dichroism. This peptide secondary structure is retained in solutions up to 50% MeOH as well. The triblock copolymers proved to be the most stable, with copolymers synthesized from 10 kDa PEG having the most stable particles. Loading of carboxyfluorescein at 2–5 mol % shows that these copolymers have the potential to encapsulate hydrophilic drugs for delivery applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004  相似文献   

10.
A series of amphiphilic temperature‐responsive star‐shaped poly(D,L‐lactic‐co‐glycolic acid)‐b‐methoxy poly(ethylene glycol) (PLGA‐mPEG) block copolymers with different arm numbers were synthesized via the arm‐first method. Gel permeation chromatography data confirmed that star‐shaped PLGA‐mPEG copolymers had narrow polydispersity index, indicating the successful formation of star‐shaped block copolymers. Indirectly, the 1H NMR spectra in two kinds of solvents and dye solubilization method had confirmed the formation of core‐shell micelles. Further, core‐shell micelles with sizes of about 30–50 nm were directly observed by transmission electron microscopy. Subsequently, the micellar sizes and distributions as a function of concentrations and temperature were measured. At various copolymer concentrations, individual micelles with size of 20–40 nm and grouped micelles with size of 600–700 nm were found. Micellar mechanism of star‐shaped block copolymers in aqueous solution was simultaneously discussed. In addition, sol–gel transition of star‐shaped block copolymers in water was also investigated via the inverting test method. The critical gel temperature (CGT) and critical gel concentration (CGC) values of two‐arm, three‐arm and four‐arm copolymer solutions were markedly higher than ones of one‐arm copolymer. Moreover, the same CGC values of copolymer solution with different molecular weight and the same arm composition were ~15 wt %, and CGT values increased from ~38 to ~47°C with increasing arm numbers. Finally, the temperature‐dependent micellar packing gelation mechanism of star‐shaped block copolymer was schematically illustrated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
With the aim of accessing colloidally stable, fiberlike, π‐conjugated nanostructures of controlled length, we have studied the solution self‐assembly of two asymmetric crystalline–coil, regioregular poly(3‐hexylthiophene)‐b‐poly(2‐vinylpyridine) (P3HT‐b‐P2VP) diblock copolymers, P3HT23b‐P2VP115 (block ratio=1:5) and P3HT44b‐P2VP115 (block ratio=ca. 1:3). The self‐assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu‐catalyzed azide–alkyne cycloaddition reactions of azide‐terminated P2VP and alkyne end‐functionalized P3HT homopolymers. When the block copolymers were self‐assembled in a solution of a 50 % (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP‐selective alcoholic solvent (MeOH<iPrOH<nBuOH). Very long (>3 μm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain‐extended P3HT blocks. The crystallinity and π‐conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide‐angle X‐ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23b‐P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23b‐P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (Lw/Ln <1.11) and lengths from about 100‐300 nm, that were dependent on the unimer‐to‐seed micelle ratio.  相似文献   

12.
A series of well‐defined hybrid block copolymers PMACyPOSS‐b‐PMMA and PMAiBuPOSS‐b‐PMMA exhibiting high POSS weight contents have been synthesized by RAFT polymerization and further studied as modifiers for epoxy thermosets based on diglycidyl ether of bisphenol A. The hybrid block copolymers self‐assembled within the epoxy precursors into micelles possessing an inorganic core and a PMMA corona. Thanks to the presence of the PMMA blocks that remain miscible until the end of the reaction, curing of the resulting blends afforded nanostructured hybrid organic/inorganic networks with well‐dispersed inorganic‐rich nanodomains with diameters on the order of 20 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
《Soft Materials》2013,11(2-3):71-84
Abstract

When polyelectrolyte‐neutral block copolymers are mixed in solutions to oppositely charged species (e.g., surfactant micelles, macromolecules, proteins, etc.), there is the formation of stable “supermicellar” aggregates combining both components. The resulting colloidal complexes exhibit a core‐shell structure, and the mechanism yielding to their formation is electrostatic self‐assembly. In this contribution, we report on the structural properties of “supermicellar” aggregates made from yttrium‐based inorganic nanoparticles (radius 2 nm) and polyelectrolyte‐neutral block copolymers in aqueous solutions. The yttrium hydroxyacetate particles were chosen as a model system for inorganic colloids, and also for their use in industrial applications as precursors for ceramic and opto‐electronic materials. The copolymers placed under scrutiny are the water‐soluble and asymmetric poly(sodium acrylate)‐b‐poly(acrylamide) diblocks. Using static and dynamical light‐scattering experiments, we demonstrate the analogy between surfactant micelles and nanoparticles in the complexation phenomenon with oppositely charged polymers. We also determine the sizes and the aggregation numbers of the hybrid organic–inorganic complexes. Several additional properties are discussed, such as the remarkable stability of the hybrid aggregates and the dependence of their sizes on the mixing conditions.  相似文献   

14.
We have introduced a new ABA‐type amphiphilic block copolymer consisting of functional oligourethane hydrophobic blocks and two polyethylene glycol (PEG) hydrophilic blocks. The polymer was synthesized in a single step by step‐growth polymerization between two monomers, namely tetraphenylethylene (TPE)‐diol and hexamehylene di‐isocyanate in the presence of a monofunctional impurity PEG‐2000. The polymer exhibits facile self‐assembly in water by synergistic effects of H‐bonding and π–π interaction among the oligourethane core, leading to the formation of robust nanoparticles with remarkable aggregation‐induced emission (AIE). These nanoparticles show very low critical aggregation concentration, stability over a large pH window, and excellent biocompatibility as revealed by an MTT assay. Cellular imaging with cancer cells showed facile cellular uptake and, more importantly, retention of AIE in cellular milieu for long times, which was successfully utilized for long‐term cancer cell tracking.  相似文献   

15.
During the last years, the field of drug delivery has experienced a growing interest toward the so‐called thermo‐responsive polymers: synthetic materials that, due to the specific hydrophilic–lipophilic balance of their repeating units, exhibit a lower critical solution temperature (LCST) in water associated to a characteristic coil–globule transition. In this work, thermo‐responsive amphiphilic block copolymers are synthesized via reversible addition‐fragmentation transfer (RAFT) polymerization starting from thermo‐responsive monomers and a hydrophobic biodegradable macromonomer, oligo(caprolactone)methacrylate (CL3MA), produced via ring opening polymerization (ROP). The obtained copolymers exhibit an interesting self‐assembly behavior leading to nanoparticles (NPs) as long as temperature is kept below the LCST. Otherwise, once this value is overcome, the destabilization of the NPs causes the formation of hydrophobic superstructures that enhance the release of an entrapped lipophilic drug. This characteristic behavior has been systematically studied and related to the copolymer structure. In particular, the self‐assembly behavior as well as temperature‐triggered NP destabilization have been related to the relative length of the two blocks constituting the copolymers and to their hydrophilic–lipophilic balance (HLB). Finally, the efficacy of the thermo‐responsive triggered drug release has been tested in the case of Paclitaxel (PTX). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2919–2931  相似文献   

16.
Biocompatible and biodegradable ABC and ABCBA triblock and pentablock copolymers composed of poly(ε‐caprolactone) (PCL), poly(L ‐lactide) (PLA), and poly(ethylene glycol) (PEO) with controlled molecular weights and low polydispersities were synthesized by a click conjugation between alkyne‐terminated PCL‐b‐PLA and azide‐terminated PEO. Their molecular structures, physicochemical and self‐assembly properties were thoroughly characterized by means of FT‐IR, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering, and transmission electron microscopy. These copolymers formed microphase‐separated crystalline materials in solid state, where the crystallization of PCL block was greatly restricted by both PEO and PLA blocks. These copolymers self‐assembled into starlike and flowerlike micelles with a spherical morphology, and the micelles were stable over 27 days in aqueous solution at 37 °C. The doxorubicin (DOX) drug‐loaded nanoparticles showed a bigger size with a similar spherical morphology compared to blank nanoparticles, demonstrating a biphasic drug‐release profile in buffer solution and at 37 °C. Moreover, the DOX‐loaded nanoparticles fabricated from the pentablock copolymer sustained a longer drug‐release period (25 days) at pH 7.4 than those of the triblock copolymer. The blank nanoparticles showed good cell viability, whereas the DOX‐loaded nanoparticles killed fewer cells than free DOX, suggesting a controlled drug‐release effect. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
The purpose of this study is to correlate the nano‐organization in water of coil‐rod‐coil amphiphilic block copolymers constituted of a conjugated segment to their optoelectronic properties. The ABA block copolymer structures, easily achieved via coupling reactions, are based on conjugated rod of dihexylfluorene and 3,4‐ethylenedioxythiophene units linked to two flexible poly(ethylene oxide) or poly[(ethylene oxide)‐ran‐(propylene oxide)] chains. These well‐defined copolymers exhibited a range of specific morphologies in water, a good solvent of coil blocks and a bad solvent of the conjugated rod. Particularly, vesicles and micelles with spherical, cylindrical, or elongated shape were noticed. Correlations were attempted to be established between the weight percent of the conjugated sequence contained in the copolymers, the morphology of the nanostructures obtained by self‐assembly in solution and the resulting optical properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4602–4616, 2008  相似文献   

18.
Dendron‐like poly(ε‐benzyloxycarbonyl‐L ‐lysine)/linear poly(ethylene oxide) block copolymers (i.e., Dm‐PZLys‐b‐PEO, m = 0 and 3; Dm are the propargyl focal point poly(amido amine) dendrons having 2m primary amine groups) were for the first time synthesized by combining ring‐opening polymerization (ROP) of ε‐benzyloxycarbonyl‐L ‐lysine N‐carboxyanhydride (Z‐Lys‐NCA) and click chemistry, where Dm‐PZLys homopolypeptides were click conjugated with azide‐terminated PEO. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. Both homopolypeptides and copolymers presented a liquid crystalline phase transition for PZLys block, and the transition was irreversible. Moreover, the degree of crystallinity of PEO block within linear copolymers decreased from 96.2% to 20.4% with increasing PZLys composition, whereas that within dendritic copolymers decreased to zero. The secondary conformation of PZLys progressively changed from β‐sheet to α‐helix with increasing the chain length. These copolymers self‐assembled into spherical nanoparticles in aqueous solution, and the anticancer drug doxorubicin‐loaded nanoparticles gave a similar morphology compared with their blank counterparts. The drug‐loaded nanoparticles showed a triphasic drug‐release profile at aqueous pH 7.4 or 5.5 and 37 °C and sustained a longer drug‐release period for about 2 months. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The stereocomplex formation between enantioselective poly(lactide) (PLA) homopolymers is well understood. In this report an attempt is made to analyze the influence on the self‐assembling of the stereocomplex of enantiomorphic PLA‐PEG di‐ and tri‐blocks in different solvents. Powder diffraction studies showed the poly(ethylene glycol) (PEG) and the PLA blocks crystallize separately forming unique supra structures like rods, discs and coiled coils with dimensions in the micrometer scale in length and sub‐micrometer scale in diameter. The influence of the solvents on the crystal formation was shown in the formation of uniform structures. Discs emerged from equimolar mixtures of the D ‐ and L ‐configured di‐ and tri‐block copolymers, in dioxan and acetonitrile and in water the stereocomplexes crystallized mainly as rods. In some cases the rods were observed as coiled coils. The shape, the hydrophobic/hydrophilic content and the PEG coated surface of the discs give them a future potential as matrix for the controlled and targeted delivery of bioactive agents. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Three amphiphilic rod‐coil diblock copolymers, poly(2‐ethyl‐2‐oxazoline‐b‐γ‐benzyl‐L ‐glutamate) (PEOz‐b‐PBLG), incorporating the same‐length PEOz block length and various lengths of their PBLG blocks, were synthesized through a combining of living cationic and N‐carboxyanhydride (NCA) ring‐opening polymerizations. In the bulk, these block copolymers display thermotropic liquid crystalline behavior. The self‐assembled aggregates that formed from these diblock copolymers in aqueous solution exhibited morphologies that differed from those obtained in α‐helicogenic solvents, that is, solvents in which the PBLG blocks adopt rigid α‐helix conformations. In aqueous solution, the block copolymers self‐assembled into spherical micelles and vesicular aggregates because of their amphiphilic structures. In helicogenic solvents (in this case, toluene and benzyl alcohol), the PEOz‐b‐PBLG copolymers exhibited rod‐coil chain properties, which result in a diverse array of aggregate morphologies (spheres, vesicles, ribbons, and tube nanostructures) and thermoreversible gelation behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3108–3119, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号