首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In the title PbII coordination polymer, [Pb(C16H10O4)(C14H8N4)(C3H7NO)]n, each PbII atom is eight‐coordinated by two chelating N atoms from one pyrazino[2,3‐f][1,10]phenanthroline (L) ligand, one dimethylformamide (DMF) O atom and five carboxylate O atoms from three different 4,4′‐ethylenedibenzoate (eedb) ligands. The eedb dianions bridge neighbouring PbII centres through four typical Pb—O bonds and one longer Pb—O interaction to form a two‐dimensional structure. The C atoms from the L and eedb ligands form C—H...O hydrogen bonds with the O atoms of eedb and DMF ligands, which further stabilize the structure. The title compound is the first PbII coordination polymer incorporating the L ligand.  相似文献   

2.
The heterometallic CuII‐BaII coordination polymer, namely [CuBa(tdc)2(H2O)(DMF)]n ( 1 ) (H2tdc = 2,5‐thiophenedicarboxylic acid, DMF = N,N′‐dimethylformamide), was solvothermally synthesized by the reaction of H2tdc, CuCl2 · 2H2O, and Ba(NO3)2. Single crystal X‐ray diffraction analysis reveals that compound 1 features a 3D intricate framework with the 1D channels occupied by the coordinated solvent molecules. After removing the coordinated solvent molecules, the desolvated samples of 1a exhibit high capacity for light hydrocarbons.  相似文献   

3.
The reactions of the new nitrilotriacetic acid N′,N′,N′‐tri(salicyloyl)trihydrazide (Ntash) with the corresponding metal salts gave four new complexes [Pb4(bshz)2] · 2DMF ( 1 ), [Co2(bshz)(C5H5N)6] · 2ClO4 · (C5H5N) · 2H2O ( 2 ), [Cu3(fshz)2(C5H5N)2] ( 3 ), and [Zn3(fshz)2(C5H5N)3]n · 2DMF ( 4 ), in which two multidentate ligands, namely N,N′‐disalicyloylhydrazine (H4bshz) and N‐formylsalicylhydrazide (H3fshz) were generated in situ from Ntash. The structures of these complexes were determined by single‐crystal X‐ray diffraction analysis. Complex 1 presents a novel tetranuclear lead(II) cluster structure with the four lead(II) cations in “hemidirected” coordination spheres. The neighboring tetranuclear clusters of 1 are connected by DMF molecules through weak Pb–O bonds, forming one‐dimensional ribbons. Complexes 2 and 3 show dinuclear and linear trinuclear structures with the corresponding CoIII and CuII ions in distorted octahedral and square‐planar coordination environments, respectively. Complex 4 exhibits a one‐dimensional zigzag chain structure. The magnetic properties of 3 and the photoluminescent properties of 4 were also investigated.  相似文献   

4.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

5.
The preformed nickel(II) complex of the 14‐membered macrocyclic ligand 1,4,8,11‐tetraazacyclotetradecane (cyclam, L), when treated with 4,4′‐(dimethylsilanediyl)diphthalic acid (H4A) in a DMF/H2O mixture (4:1 v/v) under heating, leads to [Ni(L)]3(HA)2·3DMF ( I·DMF ). Redissolution of this compound in a DMF/H2O/MeOH mixture (4:1:30 v/v/v) with mild acidification under gentle heating results in the formation of a similar compound but containing water and methanol molecules of crystallization, [Ni(L)]3(HA)2·5H2O·2MeOH ( II·H2O ). At lower temperature and concentration of reactants and longer reaction time, single crystals of composition {[{Ni(L)}3(HA)2]·4CH3OH}n ( II·MeOH ) were isolated. Single‐crystal X‐ray diffraction analysis of this compound, which, according to PXRD is isostructural with II·H2O but different from I·DMF , revealed its two‐dimensional (2D) polymeric structure, i.e. poly[[bis{μ3‐4‐[(4‐carboxy‐3‐carboxylatophenyl)dimethylsilyl]benzene‐1,2‐dicarboxylato‐κ3O1:O2:O3′}tris(1,4,8,11‐tetraazacyclotetradecane‐κ4N)trinickel(II)] methanol tetrasolvate], {[Ni3(C18H13O8Si)2(C10H24N4)3]·4CH3OH}n. It is built up of the monoprotonated tricarboxylate HA3? ligand coordinated in a monodentate manner in the axial positions of two crystallographically independent NiII cations, one of which is located on a crystallographic inversion centre. Both metal ions adopt a slightly tetragonally elongated trans‐N4O2 octahedral geometry. The compound has a lamellar structure with polymeric layers oriented parallel to the (10) plane, which are in turn linked via hydrogen bonds involving protonated carboxylic acid groups of the ligand. Bulk compounds I·DMF and II·H2O were characterized by FT–IR and diffuse reflectance spectroscopy and thermogravimetry, which provide evidence of their structural differences.  相似文献   

6.
A novel two‐dimensional CoII coordination framework, namely poly[(μ2‐biphenyl‐4,4′‐diyldicarboxylato‐κ2O4:O4′){μ2‐bis[4‐(2‐methyl‐1H‐imidazol‐1‐yl)phenyl] ether‐κ2N3:N3′}cobalt(II)], [Co(C14H8O4)(C20H18N4O)]n, has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The crystal structure reveals that the compound has an achiral two‐dimensional layered structure based on opposite‐handed helical chains. In addition, it exhibits significant photocatalytic degradation activity for the degradation of methylene blue.  相似文献   

7.
5‐[(Imidazol‐1‐yl)methyl]benzene‐1,3‐dicarboxylic acid (H2L) was synthesized and the dimethylformamide‐ and dimethylacetamide‐solvated structures of its adducts with CuII, namely catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylformamide disolvate], {[Cu(C12H9N2O4)2]·2C3H7NO}n, (I), and catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylacetamide disolvate], {[Cu(C12H9N2O4)2]·2C4H9NO}n, (II), the formation of which are associated with mono‐deprotonation of H2L. The two structures are isomorphous and isometric. They consist of one‐dimensional coordination polymers of the organic ligand with CuII in a 2:1 ratio, [Cu(μ‐HL)2]n, crystallizing as the dimethylformamide (DMF) or dimethylacetamide (DMA) disolvates. The CuII cations are characterized by a coordination number of six, being located on centres of crystallographic inversion. In the polymeric chains, each CuII cation is linked to four neighbouring HL ligands, and the organic ligand is coordinated via Cu—O and Cu—N bonds to two CuII cations. In the corresponding crystal structures of (I) and (II), the coordination chains, aligned parallel to the c axis, are further interlinked by strong hydrogen bonds between the noncoordinated carboxy groups in one array and the coordinated carboxylate groups of neighbouring chains. Molecules of DMF and DMA (disordered) are accommodated at the interface between adjacent polymeric assemblies. This report provides the first structural evidence for the formation of coordination polymers with H2Lvia multiple metal–ligand bonds through both carboxylate and imidazole groups.  相似文献   

8.
Supramolecular isomerism for coordination networks refers to the existence of different architectures having the same building blocks and identical stoichiometries. For a given building block, different arrangements can lead to the formation of a series of supramolecular isomers. Two one‐dimensional CoII coordination polymers based on N,N′‐bis(pyridin‐3‐yl)oxalamide (BPO), both catena‐poly[[[dichloridocobalt(II)]‐bis[μ‐N,N′‐bis(pyridin‐3‐yl)oxalamide‐κ2N:N′]] dimethylformamide disolvate], {[CoCl2(C12H10N4O2)2]·2C3H7NO}n, have been assembled by the solvothermal method. Single‐crystal X‐ray diffraction analyses reveal that the two compounds are supramolecular isomers, the isomerism being induced by the orientation of the dimethylformamide (DMF) molecules in the crystal lattice.  相似文献   

9.
A rational approach to modulating easy-axis magnetic anisotropy by varying the axial donor ligand in heptacoordinated FeII complexes has been explored. In this series of complexes with formulae of [Fe(H4L)(NCS)2] ⋅ 3 DMF ⋅ 0.5 H2O ( 1 ), [Fe(H4L)(NCSe)2] ⋅ 3 DMF ⋅ 0.5 H2O ( 2 ), and [Fe(H4L)(NCNCN)2] ⋅ DMF ⋅ H2O ( 3 ) [H4L=2,2′-{pyridine-2,6-diylbis(ethan-1-yl-1-ylidene)}bis(N-phenylhydrazinecarboxamide)], the axial positions are successively occupied by different nitrogen-based π-donor ligands. Detailed dc and ac magnetic susceptibility measurements reveal the existence of easy-axis magnetic anisotropy for all of the complexes, with 1 [Ueff=21 K, τ0=1.72×10−6 s] and 2 [Ueff=25 K, τ0=2.25×10−6 s] showing field-induced slow magnetic relaxation behavior. However, both experimental studies and theoretical calculations indicate the magnitude of the D value of complex 3 to be larger than those of complexes 1 and 2 due to the axial bond angle being smaller than that for an ideal geometry. Detailed analysis of the field and temperature dependences of relaxation time for 1 and 2 has revealed that multiple relaxation processes (quantum tunneling of magnetization, direct, and Raman) are involved in slow magnetic relaxation for both of these complexes. Magnetic dilution experiments support the role of intermolecular short contacts.  相似文献   

10.
Hydantoin‐5‐acetic acid [2‐(2,5‐dioxoimidazolidin‐4‐yl)acetic acid] and orotic acid (2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidine‐4‐carboxylic acid) each contain one rigid acceptor–donor–acceptor hydrogen‐bonding site and a flexible side chain, which can adopt different conformations. Since both compounds may be used as coformers for supramolecular complexes, they have been crystallized in order to examine their conformational preferences, giving solvent‐free hydantoin‐5‐acetic acid, C5H6N2O4, (I), and three crystals containing orotic acid, namely, orotic acid dimethyl sulfoxide monosolvate, C5H4N2O4·C2H6OS, (IIa), dimethylammonium orotate–orotic acid (1/1), C2H8N+·C5H3N2O4·C5H4N2O4, (IIb), and dimethylammonium orotate–orotic acid (3/1), 3C2H8N+·3C5H3N2O4·C5H4N2O4, (IIc). The crystal structure of (I) shows a three‐dimensional network, with the acid function located perpendicular to the ring. Interestingly, the hydroxy O atom acts as an acceptor, even though the carbonyl O atom is not involved in any hydrogen bonds. However, in (IIa), (IIb) and (IIc), the acid functions are only slightly twisted out of the ring planes. All H atoms of the acidic functions are directed away from the rings and, with respect to the carbonyl O atoms, they show an antiperiplanar conformation in (I) and synperiplanar conformations in (IIa), (IIb) and (IIc). Furthermore, in (IIa), (IIb) and (IIc), different conformations of the acid O=C—C—N torsion angle are observed, leading to different hydrogen‐bonding arrangements depending on their conformation and composition.  相似文献   

11.
The temperature‐dependent dynamic properties of [CuII2(ADCOO)4(DMF)2]?(DMF)2 ( 1 ) and [CuII2(ADCOO)4(AcOEt)2] ( 2 ) crystals were examined by X‐ray crystallography, 1H NMR spectroscopy, and measurements of the dielectric constants and magnetic susceptibilities (ADCOO=adamantane carboxylate, DMF=N,N‐dimethylformamide, and AcOEt=ethyl acetate). In both crystals, four ADCOO groups bridged a binuclear CuII? CuII bond, forming a paddle‐wheel [CuII2(ADCOO)4] structure. The oxygen atoms of two DMF molecules in crystal 1 and two AcOEt molecules in crystal 2 were coordinated at axial positions of the [CuII2(ADCOO)4] moiety, forming [CuII2(ADCOO)4(DMF)2] and [CuII2(ADCOO)4(AcOEt)2], respectively. Two additional DMF molecules were included in the unit cell of crystal 1 , whereas AcOEt was not included in the unit cell of crystal 2 . The structural analyses of crystal 1 at 300 K showed three‐fold rotation of the adamantyl groups, whereas rotation of the adamantyl groups of crystal 2 at 300 K was not observed. Thermogravimetric measurements of crystal 1 indicated a gradual elimination of DMF upon increasing the temperature above 300 K. The dynamic behavior of the crystallized DMF yielded significant temperature‐dependent dielectric responses in crystal 1 , which showed a huge dielectric peak at 358 K in the heating process. In contrast, only small frequency‐dependent dielectric responses were observed in crystal 2 because of the freezing of the molecular rotation of the adamantyl groups. The magnetic behavior was dominated by the strong antiferromagnetic coupling between the two S=1/2 spins of the CuII? CuII site, with magnetic exchange energies (J) of ?265 K (crystal 1 ) and ?277 K (crystal 2 ).  相似文献   

12.
The stable dinuclear [Cu(μ‐C2O4)Cu]2+ entity is facially coordinated at each end by a N‐nitrile functionalized triazamacrocycle, 1, 4, 7‐tris(cyanomethyl)‐1, 4, 7‐triazacyclononane ( L ), to generate a centrosymmetric compound [Cu2 L 2(μ‐C2O4)](ClO4)2 · 4DMF ( 1 ) containing a bis‐bidentate oxalate bridge. The variable‐temperature magnetic measurement for the crystallographically characterized compound exhibits quite strong antiferromagnetic coupling interaction between two oxalate‐linked CuII atoms separated by 5.149 Å with a singlet‐triplet energy gap of –345.5 cm–1. On the other hand, a mononuclear CoIII compound [Co L (N3)3] · 2.5H2O ( 2 ) with monodentate azide terminal groups was synthesized. Structural elucidation by X‐ray diffraction shows that the compound has crystallographically imposed C3 symmetry. Enantiomerically pure crystals were obtained upon crystallization indicated by a Flack parameter of 0.04(5).  相似文献   

13.
The title compound, [Pb(C4H3N2S)2]n, was prepared by the reaction of [Pb(OAc)2]·3H2O (OAc is acetate) with pyrimidine‐2‐thione in the presence of triethylamine in methanol. In the crystal structure, the PbII atom has an N4S4 coordination environment with four ligands coordinated by N‐ and S‐donor atoms. This compound shows that the pyrimidine‐2‐thiolate anion can lead to a three‐dimensional network when the coordination number of the metal ion can be higher than 6, as is the case with the PbII ion. This compound presents only covalent bonds, showing that despite the possibility of the hemidirected geometries of PbII, the eight‐coordinated ion does not allow the formation of an isolated molecular structure with pyrimidine‐2‐thiolate as the ligand.  相似文献   

14.
The crystal structures of three first‐row transition metal–pyridine–sulfate complexes, namely catena‐poly[[tetrakis(pyridine‐κN)nickel(II)]‐μ‐sulfato‐κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di‐μ‐sulfato‐κ4O:O‐bis[tris(pyridine‐κN)copper(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena‐poly[[tetrakis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′‐[bis(pyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square‐pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octahedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetrahedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.  相似文献   

15.
A novel twofold interpenetrating two‐dimensional (2D) ZnII coordination framework, poly[[(μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene‐κ2N3:N3)(μ‐naphthalene‐2,6‐dicarboxylato‐κ2O2:O6)zinc(II)] dimethylformamide monosolvate], {[Zn(C12H6O4)(C14H14N4)]·C3H7NO}n or {[Zn(1,3‐BMIB)(NDC)]·DMF}n (I), where H2NDC is naphthalene‐2,6‐dicarboxylic acid, 1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and DMF is dimethylformamide, was prepared and characterized through IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that (I) exhibits an unusual twofold interpenetrating 2D network. In addition, it displays strong fluorescence emissions and a high photocatalytic activity for the degradation of Rhodamine B (RhB) under UV‐light irradiation.  相似文献   

16.
A two‐dimensional MnII coordination polymer (CP), poly[bis[μ2‐2,6‐bis(imidazol‐1‐yl)pyridine‐κ2N3:N3′]bis(thiocyanato‐κN)manganese] [Mn(NCS)2(C11H9N5)2]n, (I), has been obtained by the self‐assembly reaction of Mn(ClO4)2·6H2O, NH4SCN and bent 2,6‐bis(imidazol‐1‐yl)pyridine (2,6‐bip). CP (I) was characterized by FT–IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. The crystal structure features a unique two‐dimensional (4,4) network with one‐dimensional channels. The luminescence and nitrobenzene‐sensing properties were explored in a DMF suspension, revealing that CP (I) shows a strong luminescence emission and is highly sensitive for nitrobenzene detection.  相似文献   

17.
Seven crystal structures of five first‐row (Fe, Co, Ni, Cu, and Zn) and one second‐row (Cd) transition metal–4‐picoline (pic)–sulfate complexes of the form [M(pic)x]SO4 are reported. These complexes are catena‐poly[[tetrakis(4‐methylpyridine‐κN)metal(II)]‐μ‐sulfato‐κ2O:O′], [M(SO4)(C6H7N)4]n, where the metal/M is iron, cobalt, nickel, and cadmium, di‐μ‐sulfato‐κ4O:O‐bis[tris(4‐methylpyridine‐κN)copper(II)], [Cu2(SO4)2(C6H7N)6], catena‐poly[[bis(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)2]n, and catena‐poly[[tris(4‐methylpyridine‐κN)zinc(II)]‐μ‐sulfato‐κ2O:O′], [Zn(SO4)(C6H7N)3]n. The Fe, Co, Ni, and Cd compounds are isomorphous, displaying polymeric crystal structures with infinite chains of MII ions adopting an octahedral N4O2 coordination environment that involves four picoline ligands and two bridging sulfate anions. The Cu compound features a dimeric crystal structure, with the CuII ions possessing square‐pyramidal N3O2 coordination environments that contain three picoline ligands and two bridging sulfate anions. Zinc crystallizes in two forms, one exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a tetrahedral N2O2 coordination containing two picoline ligands and two bridging sulfate anions, and the other exhibiting a polymeric crystal structure with infinite chains of ZnII ions adopting a trigonal bipyramidal N3O2 coordination containing three picoline ligands and two bridging sulfate anions. The structures are compared with the analogous pyridine complexes, and the observed coordination environments are examined in relation to crystal field theory.  相似文献   

18.
The syntheses and crystal structures of the title Pt2II and Pt2III dimers doubly bridged with N,N‐dimethyl­guanidinate ligands, namely bis­(μ‐N,N‐dimethyl­guanidinato)bis­[(2,2′‐bipyridine)platinum(II)](Pt—Pt) bis­(hexa­fluoro­phosphate) acetonitrile disolvate, [Pt2II(C3H8N3)2(C10H8N2)2](PF6)2·2CH3CN, (I), and guanidinium bis­(μ‐N,N‐dimethyl­guanidinato)bis­[(2,2′‐bipyridine)sulfatoplatinum(III)](Pt—Pt) bis­(hexa­fluoro­phosphate) nitrate hexa­hydrate, (C3H10N3)[PtIII2(C3H8N3)2(SO4)2(C10H8N2)2]NO3·6H2O, (II), are reported. The oxidation of the Pt2II dimer into the Pt2III dimer results in a marked shortening of the Pt—Pt distance from 2.8512 (6) to 2.5656 (4) Å. The change is mainly compensated for by the change in the dihedral angle between the two Pt coordination planes upon oxidation, from 21.9 (2) to 16.9 (3)°. We attribute the relatively strong one‐dimensional stack of dimers achieved in the Pt2II compound in part to the strong PtII⋯C(bpy) associations (bpy is 2,2′‐bipyridine) in the crystal structure [Pt⋯C = 3.416 (10) and 3.361 (12) Å].  相似文献   

19.
A combination of a bent bis(naphthalene) and hydroxy‐based dicarboxylate linker and a flexible bis(tridentate)polypyridyl ligand has been employed to self‐assemble with two different d10 metal centers, ZnII and CdII, to form structurally diversified luminescent metal–organic frameworks, [Zn2(tpbn)(mbhna)2(H2O)2]?4 H2O?1.5DMF ( 1 ) and {[Cd2(tpbn)(mbhna)2]?2DMF}n ( 2 ), respectively (where, tpbn=N,N′,N′′,N′′′‐tetrakis(pyridine‐2‐ylmethyl)butane‐1,4‐diamine and H2mbhna=4,4′‐methylene‐bis[3‐hydroxy‐2‐naphthalene carboxylic acid]). Both 1 and 2 are characterized and analyzed by various analytical techniques including single‐crystal X‐ray diffractometry. Their excellent emissive nature is studied in different solvents and further utilized to selectively detect aromatic amines, particularly 4‐nitroaniline in water with detection limits at sub‐ppm level. The difference in sensing activity of 1 and 2 toward 4‐NA is corroborated well with their structures. The mechanism of action has been established through Stern–Volmer plot, spectral overlap, time‐resolved lifetime studies and HOMO–LUMO energy calculations. In addition, 1 and 2 are found to be recyclable and display good stability after sensing experiments.  相似文献   

20.
Two new mononuclear coordination compounds, bis{4‐[(hydroxyimino)methyl]pyridinium} diaquabis(pyridine‐2,5‐dicarboxylato‐κ2N,O2)zincate(II), (C6H7N2O)2[Zn(C7H3NO4)2(H2O)2], (1), and (pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)bis[N‐(pyridin‐4‐ylmethylidene‐κN)hydroxylamine]zinc(II), [Zn(C7H3NO4)(C6H6N2O)2], (2), have been synthesized and characterized by single‐crystal X‐ray diffractometry. The centrosymmetric ZnII cation in (1) is octahedrally coordinated by two chelating pyridine‐2,5‐dicarboxylate ligands and by two water molecules in a distorted octahedral geometry. In (2), the ZnII cation is coordinated by a tridentate pyridine‐2,6‐dicarboxylate dianion and by two N‐(pyridin‐4‐ylmethylidene)hydroxylamine molecules in a distorted C2‐symmetric trigonal bipyramidal coordination geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号