首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

2.
A new series of aza‐BODIPY derivatives ( 4 a – 4 c , 5 a , c , and 6 b , c ) were synthesized and their excited‐state properties, such as their triplet excited state and the yield of singlet‐oxygen generation, were tuned by substituting with heavy atoms, such as bromine and iodine. The effect of substitution has been studied in detail by varying the position of halogenation. The core‐substituted dyes showed high yields of the triplet excited state and high efficiencies of singlet‐oxygen generation when compared to the peripheral‐substituted systems. The dye 6 c , which was substituted with six iodine atoms on the core and peripheral phenyl ring, showed the highest quantum yields of the triplet excited state (ΦT=0.86) and of the efficiency of singlet‐oxygen generation (ΦΔ=0.80). Interestingly, these dyes were highly efficient as photooxygenation catalysts under artificial light, as well as under normal sunlight conditions. The uniqueness of these aza‐BODIPY systems is that they are stable under irradiation conditions, possess strong red‐light absorption (620–680 nm), exhibit high yields of singlet‐oxygen generation, and act as efficient and sustainable catalysts for photooxygenation reactions.  相似文献   

3.
Novel BODIPY photosensitizers were developed for imaging‐guided photodynamic therapy. The introduction of a strong electron donor to the BODIPY core through a phenyl linker combined with the twisted arrangement between the donor and the BODIPY acceptor is essential for reducing the energy gap between the lowest singlet excited state and the lowest triplet state (ΔEST), leading to a significant enhancement in the intersystem crossing (ISC) of the BODIPYs. Remarkably, the BDP‐5 with the smallest ΔEST (ca. 0.44 eV) exhibited excellent singlet oxygen generation capabilities in both organic and aqueous solutions. BDP‐5 also displayed bright emission in the far‐red/near‐infrared region in the condensed states. More importantly, both in vitro and in vivo studies demonstrated that BDP‐5 NPs displayed a high potential for photodynamic cancer therapy and bioimaging.  相似文献   

4.
Previous studies of perylenediimides (PDIs) mostly utilized the lowest singlet excited state S1. Generation of a triplet excited state (T1) in PDIs is important for applications ranging from photodynamic therapy to photovoltaics; however, it remains a formidable task. Herein, we developed a heavy‐atom‐free strategy to prompt the T1←S1 intersystem crossing (ISC) by introducing electron‐donating aryl (Ar) groups at the head positions of an electron‐deficient perylenediimide (PDI) core. We found that the ISC efficiency increases from 8 to 54 % and then to 86 % by increasing the electron‐donating ability of head‐substituted aryl groups from phenyl (p‐PDI) to methoxyphenyl (MeO‐PDI) and then to methylthioxyphenyl (MeS‐PDI). By enhancing the intramolecular charge‐transfer (ICT) interaction from p‐PDI to MeO‐PDI, and then to MeS‐PDI, singlet oxygen generation via energy‐transfer reactions from T1 of PDIs to 3O2 was demonstrated with the highest yield of up to 80 %. These results provide guidelines for developing new triplet‐generating PDIs and related rylene diimides for optoelectronic applications.  相似文献   

5.
A heteroleptic bis(tributylphosphine) platinum(II)‐alkynyl complex ( Pt‐1 ) showing broadband visible‐light absorption was prepared. Two different visible‐light‐absorbing ligands, that is, ethynylated boron‐dipyrromethene (BODIPY) and a functionalized naphthalene diimide (NDI) were used in the molecule. Two reference complexes, Pt‐2 and Pt‐3 , which contain only the NDI or BODIPY ligand, respectively, were also prepared. The coordinated BODIPY ligand shows absorption at 503 nm and fluorescence at 516 nm, whereas the coordinated NDI ligand absorbs at 594 nm; the spectral overlap between the two ligands ensures intramolecular resonance energy transfer in Pt‐1 , with BODIPY as the singlet energy donor and NDI as the energy acceptor. The complex shows strong absorption in the region 450 nm–640 nm, with molar absorption coefficient up to 88 000 M ?1 cm?1. Long‐lived triplet excited states lifetimes were observed for Pt‐1 – Pt‐3 (36.9 μs, 28.3 μs, and 818.6 μs, respectively). Singlet and triplet energy transfer processes were studied by the fluorescence/phosphorescence excitation spectra, steady‐state and time‐resolved UV/Vis absorption and luminescence spectra, as well as nanosecond time‐resolved transient difference absorption spectra. A triplet‐state equilibrium was observed for Pt‐1 . The complexes were used as triplet photosensitizers for triplet–triplet annihilation upconversion, with upconversion quantum yields up to 18.4 % being observed for Pt‐1 .  相似文献   

6.
Polyimides such as 6F-6F and 6F-ODA and model N-arylphthalimides are stabilized against photooxidative degradation by their electron donor (D) – acceptor (A) character. We have investigated the precise origin(s) of this effect using D and A substituents on the N-aryl groups of these compounds. The lowest excited singlet state (S1) of N-arylphthalimides is an intramolecular charge transfer (ICT) state. A nominally twisted compound, N-(2-t-butylphenyl)phthalimide, shows greatly diminished CT absorption and blue-shifted fluorescence with reduced quantum yield when compared to the 4-t-butyl isomer with an identical N-aryl donor group. It therefore seems unnecessary to claim that the ICT state of phthalimides is a so-called TICT state. Quantum yield and fluorescence lifetime measurements lead to the conclusion that enhanced internal conversion from the ICT state (S1) to the ground state makes a significant contribution to photostabilization of these compounds by suppressing formation of the reactive triplet state. Further stabilization of polymer films may be afforded by triplet state self-quenching which is enhanced for 6F-ODA in increasingly poor solvents. N-alkylarylphthalimides in which the aryl and phthalimide groups are not formally conjugated but, rather, joined by flexible methylene ‘spacers’, exhibit a different kind of fluorescent intramolecular CT singlet state whose formation can also stabilize these compounds by suppressing triplet state formation.  相似文献   

7.
A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).  相似文献   

8.
Effects of solvent, pH and hydrogen bonding with N‐methylimidazole (MIm) on the photophysical properties of 1‐hydroxyfluorenone (1HOF) have been studied. Fluorescence lifetime, fluorescence quantum yield and triplet yield measurements demonstrated that intersystem crossing was the dominant process in apolar media and its rate constant significantly diminished with increasing solvent polarity. The acceleration of internal conversion in alcohols paralleled the strength of intermolecular hydrogen bonding. The faster energy dissipation from the singlet‐excited state in cyclohexane was attributed to intramolecular hydrogen bonding. The pKa of 1HOF decreased from 10.06 to 5.0 on light absorption, and H3O+ quenched the singletexcited molecules in a practically diffusion‐controlled reaction. On addition of MIm in toluene, dual fluorescence was observed, which was attributed to reversible formation of excited hydrogen‐bonded ion pair. Rate constants for the various deactivation pathways were derived from the combined analysis of the steady‐state and the time‐resolved fluorescence results.  相似文献   

9.
Fluorogenic analogues of α‐tocopherol developed by our group have been instrumental in monitoring reactive oxygen species (ROS) within lipid membranes. Prepared as two‐segment trap‐reporter (chromanol‐BODIPY) probes, photoinduced electron transfer (PeT) was utilized to provide these probes with an off/on switch mechanism warranting the necessary sensitivity. Herein, we rationalize within the context of Marcus theory of electron transfer how substituents on the BODIPY core and linker length joining the trap and reporter segments, tune PeT efficiency. DFT and electrochemical studies were used to estimate the thermodynamic driving force of PeT in our constructs. By tuning the redox potential over a 400 mV range, we observed over an order of magnitude increase in PeT efficiency. Increasing the linker length between the chromanol and BODIPY by 2.8 angstroms, in turn, decreased PeT efficiency 2.7‐fold. Our results illustrate how substituent and linker choice enable “darkening” the off state of fluorogenic probes based on BODIPY fluorophores, by favoring PeT over radiative emission from the singlet excited state manifold. Ultimately, our work brings light to the sensitivity ceiling one may achieve in developing fluorogenic antioxidant analogues of α‐tocopherol. The work provides general guidelines applicable to those developing fluorogenic probes based on PeT.  相似文献   

10.
Thiopurine prodrugs are currently among the leading treatment options for leukemia, immunosuppression, and arthritis. Patients undergoing long‐term thiopurine treatment are at a higher risk of developing sunlight‐induced skin cancers than the general population. This side effect originates from the cellular metabolization of thiopurine prodrugs to form 6‐thio‐2′‐deoxyguanosine, which can absorb UVA radiation, populating its reactive triplet state and leading to oxidatively generated damage. However, the photo‐oxidation mechanism is not fully understood. In this contribution, the oxidation potential and the adiabatic triplet energy of 6‐thio‐2′‐deoxyguanosine are estimated computationally, whereas the intrinsic rate of triple‐state decay and the rate constant for triplet quenching by molecular oxygen are determined using time‐resolved spectroscopic techniques. A singlet oxygen quantum yield of 0.24 ± 0.02 is measured in aqueous solution (0.29 ± 0.02 in acetonitrile). Its magnitude correlates with the relatively low percentage of triplet‐O2 collision events that generate singlet oxygen (SΔ = 37%). This behavior is rationalized as being due to the exergonic driving force for electron transfer between the triplet state of 6‐thio‐2′‐deoxyguanosine and molecular oxygen (ΔGET = ?69.7 kJ mol?1), resulting in the formation of a charge‐transfer complex that favors nonradiative decay to the ground state over triplet energy transfer.  相似文献   

11.
Detailed investigations by time‐resolved transient absorption and fluorescence spectroscopies with nano‐ and femtosecond time resolutions are carried out with the aim of characterising the lowest excited singlet and triplet states of three ethynyl fluorenes ( 1 – 3 ) and three ethynyl anthracenes ( 4 – 6 ) in solvents of different polarity. The solvent is found to modify the deactivation pathways of the lowest excited singlet state of compounds 1 – 4 , thus changing their fluorescence, intersystem crossing and internal conversion efficiencies. The fluorescence and triplet yields gradually decrease, while the internal conversion quantum yield increases upon increasing the solvent dielectric constant. These experimental results, coupled with the marked fluorosolvatochromic effect, point to the involvement of an emitting state with a charge‐transfer (CT) character, strongly stabilised by polar solvents. This is proved by ultrafast spectroscopic studies in which two transients, distinguished by characteristic spectral shapes assigned to locally excited (LE) and CT states, are detected, the CT state being the longer lived and fluorescent one in highly polar solvents. The intramolecular LE→CT process, operative in highly polar media, becomes particularly fast (up to ≈300 fs) in the case of the NO2 derivative 1 . No push–pull character is found for 5 and 6 , which exhibit different photophysical behaviour; indeed, the solvent polarity does not modify significantly the dynamics of the lowest excited singlet states. Quantum mechanical calculations at the TDDFT level are also used to determine the state order and nature of the lowest excited singlet and triplet states and to rationalise the different photophysical behaviour of fluorine and anthracene derivatives, particularly concerning the intersystem crossing process.  相似文献   

12.
Abstract— Triplet extinction coefficients and hence singlet → triplet intersystem crossing quantum yields have been measured in benzene for a number of linear furocoumarins including pseudopsoralen, 5, 8-dimethoxypsoralen, 4, 5', 8-trimethylpsoralen and 3-carbethoxypseudopsoralen. These triplet yields were then used in conjunction with the corresponding quantum yields of singlet oxygen formation, measured in oxygenated solution, to estimate the fractions of furocoumarin triplets which when quenched by ground state oxygen produce singlet excited oxygen, similar data being obtained for psoralen, 5-methoxypsoralen, 8-methoxypsoralen and 3-carbethoxypsoralen. The superoxide anion radical was not detected from these oxygen quenching reactions, nor was a contribution to the singlet oxygen yield found from furocoumarin excited singlet state quenching by oxygen. The fraction of furocoumarin-oxygen quenching interactions leading to singlet oxygen varied between 0.13 (for 5, 8-dimethoxypsoralen) and unity (for 3-carbethoxypsoralen), and thus needs to be taken into account, as well as the triplet quantum yields, in assessing photobiological processes involving singlet oxygen.  相似文献   

13.
A novel distyryl BODIPY–fullerene dyad is prepared. Upon excitation at the distyryl BODIPY moiety, the dyad undergoes photoinduced electron transfer to give a charge‐separated state with lifetimes of 476 ps and 730 ps in polar (benzonitrile) and nonpolar (toluene) solvents, respectively. Transient absorption measurements show the formation of the triplet excited state of distyryl BODIPY in the dyad, which is populated from charge‐recombination processes in both solvents.  相似文献   

14.
The photophysical properties of a chlorin, isobacteriochlorin and bacteriochlorin built on a core tetrapentafluorophenylporphyrin (TPPF20) and the nonhydrolyzable para thioglycosylated conjugates of these chromophores are presented. The photophysical characterization of these compounds was done in three different solvents to correlate with different environments in cells and tissues. Compared with TPPF20 other dyes have greater absorption in the red region of the visible spectrum and greater fluorescence quantum yields. The excited state lifetimes are from 3 to 11 ns. The radiative and nonradiative rate constants for deactivation of the excited state were estimated from the fluorescence quantum yield and excited state lifetime. The data indicate that the bacteriochlorin has strong absorption bands near 730 nm and efficiently enters the triplet manifold. The isobacteriochlorin has a 40–70% fluorescence quantum yield depending on solvent, so it may be a good fluorescent tag. The isobacteriochlorins also display enhanced two‐photon absorption, thereby allowing the use of 860 nm light to excite the compound. While the two‐photon cross section of 25 GM units is not large, excitation of low chromophore concentrations can induce apoptosis. The glycosylated compounds accumulate in cancer cells and a head and neck squamous carcinoma xenograft tumor model in mice. These compounds are robust to photobleaching.  相似文献   

15.
In photosensitizers, long triplet excited state lifetimes are key to their efficient electron transfer or energy transfer processes. Herein, we report a novel class of cyclic trimeric BODIPY arrays which were efficiently generated from easily accessible meso-mesityldipyrrinone and arylboronic acids in one pot. Arylboronic acid, for the first time, was used to provide a boron source for BODIPY derivatives. Due to the well-defined and orthogonally aligned BODIPY cores as verified by X-ray crystallography, these BODIPY arrays show strong exciton coupling effects and efficient intersystem crossings, and are novel heavy-atom-free photosensitizers with a long-lived triplet excited state (lifetime up to 257.5 μs) and good reactive oxygen species generation efficiency (up to 0.72) contributed by both 1O2 and O2˙ under light irradiation.

Cyclic BODIPY trimers showed strong exciton coupling in singlet excited states and long-lived triplet excited states, and generated both singlet oxygen and superoxide radicals under light irradiation, giving good reactive oxygen quantum yields and promising PDT results in vitro.  相似文献   

16.
A series of meso‐ester‐substituted BODIPY derivatives 1–6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core ( 3 – 6 ) become partially soluble in water, and their absorptions and emissions are located in the far‐red or near‐infrared region. Three synthetic approaches are attempted to access the meso‐carboxylic acid (COOH)‐substituted BODIPYs 7 and 8 from the meso‐ester‐substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso‐COOH‐substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time‐dependent density functional theory calculations are conducted to understand the structure–optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso‐ester‐substituted BODIPYs ( 1 and 3 – 6 ) and one of the meso‐COOH‐substituted BODIPYs ( 8 ) are very membrane‐permeable. These features make these meso‐ester‐ and meso‐COOH‐substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells.  相似文献   

17.
Steady-state fluorescence has been used to study the excited singlet state of ofloxacin (OFLX) in aqueous solutions. Fluorescence emission was found to be pH dependent, with a maximum quantum yield of 0.17 at pH 7. Two pKa*s of around 2 and 8.5 were obtained for the excited singlet state. Laser flash photolysis and pulse radiolysis have been used to study the excited states and free radicals of OFLX in aqueous solutions. OFLX undergoes monophotonic photoionization from the excited singlet state with a quantum yield of 0.2. The cation radical so produced absorbs maximally at 770 nm with an extinction coefficient of 5000 +/- 500 dm3 mol-1 cm-1. This is confirmed by one-electron oxidation in the pulse radiolysis experiments. The hydrated electron produced in the photoionization process reacts with ground state OFLX with a rate constant of 2.0 +/- 0.2 x 10(10) dm3 mol-1 s-1, and the anion thus produced has two absorption bands at 410 nm (extinction coefficient = 3000 +/- 300 dm3 mol-1 cm-1) and at 530 nm. Triplet-triplet absorption has a maximum at 610 nm with an extinction coefficient of 11,000 +/- 1500 dm3 mol-1 cm-1. The quantum yield of triplet formation has been determined to be 0.33 +/- 0.05. In the presence of oxygen, the triplet reacts to form both excited singlet oxygen and superoxide anion with quantum yields of 0.13 and < or = 0.2, respectively. Moreover, superoxide anion is also formed by the reaction of oxygen with the hydrated electron from photoionization. Hence the photosensitivity due to OFLX could be initiated by the oxygen radicals and/or by OFLX radicals acting as haptens.  相似文献   

18.
Quinoidal π‐conjugated polycyclic hydrocarbons have attracted intensive research interest due to their unique optical/electronic properties and possible magnetic activity, which arises from a thermally excited triplet state. However, there is still lack of fundamental understanding on the factors that determine the electronic ground states. Herein, by using quinoidal oligo(9,10‐anthryl)s, it is demonstrated that both aromatic stabilisation and steric strain release play balanced roles in determining the ground states. Oligomers with up to four anthryl units were synthesised and their ground states were investigated by electronic absorption and electron spin resonance (ESR) spectroscopy, assisted by density functional theory (DFT) calculations. The quinoidal 9,10‐anthryl dimer 1 has a closed‐shell ground state, whereas the tri‐ ( 2 ) and tetramers ( 3 ) both have an open‐shell diradical ground state with a small singlet–triplet gap. Such a difference results from competition between two driving forces: the large steric repulsion between the anthryl/phenyl units in the closed‐shell quinoidal form that drives the molecule to a flexible open‐shell diradical structure, and aromatic stabilisation due to the gain of more aromatic sextet rings in the closed‐shell form, which drives the molecule towards a contorted quinoidal structure. The ground states of these oligomers thus depend on the overall balance between these two driving forces and show chain‐length dependence.  相似文献   

19.
Here, we report the synthesis, photophysical properties and photodynamic effects in DLA live cells of three water soluble squaraine dyes, viz. bisbenzothiazolium squaraine dyes SQMI and SQDI with iodine in one and both benzothiazolium units, respectively, and an unsymmetrical squaraine dye ASQI containing iodinated benzothiazolium and aniline substituents. The diiodinated SQDI showed an anomalous trend in both fluorescence and triplet quantum yields over the monoiodinated SQMI, with SQDI showing higher fluorescence and lower triplet quantum yields compared to SQMI. Nanosecond laser flash photolysis of SQDI and SQMI indicated the formation of triplet excited states with quantum yield of 0.19 and 0.26, respectively. On photoirradiation, both the SQDI and SQMI generate singlet oxygen and it was observed that both dyes undergoing oxidation reactions with the singlet oxygen generated. ASQI which exhibited a lower triplet quantum yield of 0.06 was, however, stable and did not react with the singlet oxygen generated. In vitro cytotoxicity studies of these dyes in DLA live cells were performed using Trypan blue dye exclusion method and it reflect an order of cytotoxicity of SQDI>SQMI>ASQI. Intracellular generation of the ROS was confirmed by dichlorofluorescein assay after the in vitro PDT.  相似文献   

20.
Eight differently substituted title dye compounds have been investigated regarding intersystem crossing, triplet state, fluorescence and singlet excited state pKa properties. In general, non-halogenated oxazines and thiazines as well as a mono bromooxazine show very low triplet quantum yields, phi tau (less than 0.03) and relatively long triplet lifetimes (approximately 40 microseconds) in acidic methanol. The phi tau data correlate well with known singlet oxygen yields. In basic methanol no triplet transient is observed but a significant yield of a ground state transient protonated (base dye) form is produced with a short lifetime, approximately 400 ns. Fluorescence can be seen simultaneously from both the excited base and the protonated base dye forms in basic methanol. For iodinated oxazine or thiazines, the triplet yield increases and can be as high as 0.5 (diiodo case) in acidic methanol. The triplet lifetimes are further shortened to approximately 10 microseconds compared to the non-iodinated derivatives above. The triplet yields of the iodo compounds are higher or equal to known singlet oxygen yields. In basic methanol triplet yields up to 0.2 can be seen, the triplet lifetime are shortened still further to 1 microsecond but no observable protonated form is produced (in distinction to the non-iodinated cases). Consideration is given to the correlation of triplet and singlet oxygen yields, ground and excited pKa properties, spin-orbit coupling and internal conversion properties, solvent effects, and phototherapeutic activity of these dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号