首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
Six Cu(II) complexes of Schiff base ligands of arylidene-2-(4-(4-bromo/methoxy-phenyl)thiazol-2-yl) hydrazines have been synthesized, characterized and screened for DNA cleavage and antimicrobial activities. The chemical structures of the complexes were deduced by physicochemical and spectroscopic methods. Elemental analyses indicated that the stoichiometry of the complexes is CuL2 (L = Schiff base ligand). The DNA cleavage activities of the complexes were evaluated by agarose gel electrophoresis in the presence and absence of oxidant (H2O2) and free radical scavenger (DMSO). All the six complexes showed significant nuclease activity in the presence of H2O2, and two of the complexes showed moderate nuclease activity even in the absence of oxidant. The complexes did not show nuclease activity in the presence of free radical scavenger. The compounds were tested for activity against selected bacteria and fungi.  相似文献   

2.
Binuclear copper(II) complexes of thiosemicarbazones derived from cuminaldehyde (p-isopropyl benzaldehyde) and substituted thiosemicarbazides NH2NHC(S)NHR, where R = H, Me, Et or Ph have been synthesized and characterized. The ESR indicates that the dissociation of dimeric complex into mononuclear [Cu(L)Cl(DMSO)3] units in polar solvents like DMSO, where L = monoanionic thiosemicarbazone. The molecular ion peak in the LC-MS coincides with the formula weight of the complexes. The absorption titration studies revealed that each of these complexes is an avid binder to calf thymus-DNA. The apparent binding constants are in the order of 107–108 M−1. The nucleolytic cleavage activities of the ligands and their complexes were assayed on pUC18 plasmid DNA using gel electrophoresis in the presence and absence of H2O2. The ligands showed increased nuclease activity when administered as copper complexes. All these copper(II) complexes behave as an efficient chemical nucleases with hydrogen peroxide activation. These studies revealed that the complexes exhibit both oxidative and hydrolytic chemistry in DNA cleavage.  相似文献   

3.
A novel hydrazone ligand derived from condensation reaction of 3‐hydroxy‐2‐naphthoic hydrazide with dehydroacetic acid, and its Ni(II), Cu(II) and Co(II) complexes were synthesized, characterized by spectroscopic, elemental analyses, magnetic susceptibility and conductivity methods, and screened for antimicrobial, DNA binding and cleavage properties. Spectroscopic analysis and elemental analyses indicated the formula, [MLCl2], for the complexes; square planar geometry for the nickel, and tetrahedral geometry for copper and cobalt complexes. The non‐electrolytic natures of the complexes in Dimethyl Sulphoxide (DMSO) were confirmed by their molar conductance values in the range of 6.11–14.01 Ω?1cm2mol?1. The copper complex had the best antibacterial activity against Staphylococcus aureus (ATCC 29213). DNA cleavage activities of the compounds, evaluated on pBR322 DNA, by agarose gel electrophoresis, in the presence and absence of oxidant (H2O2) and free radical scavenger (DMSO), indicated no activity for the ligand, and moderate activity for the complexes, with the copper complex cleaving pBR322 DNA more efficiently in the presence of H2O2. When the complexes were evaluated for antibacterial and A‐DNA activity using Molecular docking technique, the copper complex was found to be most effective against Gram‐positive (S. aureus) bacteria. [CuLCl2] showed good hydrogen bonding interaction with the major‐groove (C2.G13 base pair) of A‐DNA. Density functional theory (DFT) calculations of the structural and electronic properties of the complexes revealed that [CuLCl2] had a smaller HOMO‐LUMO gap, suggesting a higher tendency to donate electrons to electron‐accepting species of biological targets.  相似文献   

4.
A novel diazadiphosphetidine ligand derived from the reaction of 2,4‐dichloro‐1,3‐dimethyl‐1,3,2,4‐diazadiphosphetidine‐2,4‐dioxide and 2,2′‐(ethane‐1,2‐diylbis[oxy])bis(ethan‐1‐amine) and its Ni(II), Cu(II), and Co(II) complexes have been synthesized, characterized by spectroscopic, elemental analyses, magnetic susceptibility, and conductivity methods, and screened for antimicrobial, DNA binding, and cleavage properties. Spectroscopic analysis and elemental analyses indicate the formula [M(H2L)Cl2] for the Cu(II), Co(II), Ni(II), and Zn(II) complexes and octahedral geometry for all the complexes. The non‐electrolytic nature of the complexes in dimethyl sulfoxide (DMSO) was confirmed by their molar conductance values, which are in the range 12.32–6.73 Ω?1 cm2 mol?1. Computational studies have been carried out at the density functional theory (DFT)‐B3LYP/6‐31G(d) level of theory on the structural and spectroscopic properties of diazadiphosphetidine H2L and its binuclear Cu(II), Co(II), Ni(II), and Zn(II) complexes. Six tautomers and geometrical isomers of the diazadiphosphetidine ligand were confirmed using semiempirical AM1 and DFT method from DMOL3 calculations. The copper complex had the best antibacterial activity against Staphylococcus aureus (ATCC 29213). DNA cleavage activities of the compounds, evaluated on pBR322 DNA by agarose gel electrophoresis in the presence and absence of an oxidant (H2O2) and a free‐radical scavenger (DMSO), indicated no activity for the ligand and moderate activity for the complexes, with the copper complex cleaving pBR322 DNA more efficiently in the presence of H2O2.  相似文献   

5.
A new heterocyclic Schiff bases, 6‐methyl/8methyl‐2‐oxo‐1,2‐dihydroquinoline‐3‐carboxaldehyde semicarbazones (H2‐6MOQsc‐H) ( H 2 L 1 ) and (H2‐8MOQsc‐H) ( H 2 L 2 ) and their corresponding copper(II) complexes [CuCl2(H2‐6MOQsc‐H)].3H2O ( 1 ), [CuCl2(H2‐8MOQsc‐H)].3H2O ( 2 ), [CuNO3(H2‐6MOQsc‐H)(H2O)].NO3 ( 3 ) and [CuNO3(H2‐8MOQsc‐H)(H2O)].NO3 ( 4 ) have been synthesized and characterized by various physicochemical techniques. The single crystal X‐ray diffraction and spectral data revealed that all of the complexes ( 1‐4 ), the ligands coordinated to the Cu(II) ion in a neutral manner via ONO donor atoms and all the complexes exhibited distorted squarepyramidal geometry. The consequence of electronegativity and ring size of nitrogen heterocyclic moiety of ONO donor type of copper(II) chelates on nucleic acid interaction and albumin binding was investigated by in vitro experiments. The interaction of compounds with calf‐thymus DNA (CT‐DNA) has been explored by absorption and emission titration, which exposed those ligands/complexes, could bind with CT‐DNA through electrostatic interaction. The results of gel electrophoresis proved the ability of complexes ( 1‐4 ) to cleave the pBR322 plasmid DNA. The interaction of serum albumin (BSA) was investigated by UV‐Vis, fluorescence, synchronous and three dimensional fluorescence spectra. In addition, radical scavenging activity, antifungal activity and cytotoxicity of the newly synthesized compounds were also evaluated. From the results of in vitro studies, it is seen that complex 3 has more potential as compared with other complexes and ligands.  相似文献   

6.
A series of homo‐, heterodinuclear and homotrinuclear copper(II) complexes containing a new Schiff base ligand and 1,10‐phenanthroline were synthesized. Based on results of elemental analyses, FTIR, 1H‐ and 13C‐NMR spectra, conductivity measurements and magnetic susceptibility measurements, the complexes had general compositions {[Cu(L)(H2O)M(phen)2](ClO4)2 [M = Cu(II), Mn(II), Co(II)]} and {[Cu3(L)2(H2O)2](ClO4)2}. The metal:L:phen ratio is 2:1:2 for the dinuclear copper(II) complexes and the metal:L ratio was 3:2 for the trinuclear copper(II) complex. The liquid–liquid extraction of various transition metal cations [Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II), Hg(II)] from the aqueous phase to the organic phase was carried out using the diimine–dioxime ligand. It was concluded that the ligand can effectively be used in solvent extraction of copper(II) from the aqueous phase to the organic phase. Furthermore, catalytic activitiy of the complexes for the disproportionation of hydrogen peroxide was also investigated in the presence of imidazole. Dinuclear copper(II)–manganese(II) complex has some similarity to manganese catalase in structure and activity. The interaction between these complexes and DNA has also been investigated by agarose gel electrophoresis; we found that the homo‐ and heterodinuclear copper complexes can cleave supercoiled pBR322 DNA to nicked and linear forms in the presence of H2O2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Redox active mononuclear and binuclear copper(II) complexes have been prepared and structurally characterized. The complexes have planar N-donor heterocyclic bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and dipyridophenazine (dppz) ligands that are suitable for intercalation to B-DNA. Complexes studied for nuclease activity have the formulations [Cu(dpq)2(H2O)] (ClO4)2.H2O (1), [CuL(H2O)2(μ-ox)](ClO4)2 (L = bpy,2; phen,3; dpq,4; and dppz,5) and [Cu(L)(salgly)] (L = bpy,6; phen,7; dpq,8; and dppz,9), where salgly is a tridentate Schiff base obtained from the condensation of glycine and salicylaldehyde. The dpq complexes are efficient DNA binding and cleavage active species. The dppz complexes show good binding ability but poor nuclease activity. The cleavage activity of thebis-dpq complex is significantly higher than thebis-phen complex of copper(II). The nuclease activity is found to be dependent on the intercalating nature of the complex and on the redox potential of the copper(II)/copper(I) couple. The ancillary ligand plays a significant role in binding and cleavage activity.  相似文献   

8.
New N2O2 donor type Schiff bases have been designed and synthesized by condensing acetylaceto-4-aminoantipyrine/acetoacetanilido-4-aminoantipyrine with 2-amino benzoic acid in ethanol. Solid metal complexes of the Schiff bases with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, FAB Mass, IR, UV-Vis., 1H NMR, and ESR spectral studies. The data show that the complexes have a composition of the ML type. The UV-Vis., magnetic susceptibility, and ESR spectral data of the complexes suggest a square planar geometry around the central metal ion, except for VO(IV) complexes, which have square-pyramidal geometry. The redox behavior of copper and vanadyl complexes has been studied by cyclic voltammetry. The nuclease activity of the above metal complexes shows that the complexes cleave DNA through redox chemistry. In the presence of H2O2, all the complexes are capable of cleaving calf thymus DNA plasmids, in order to compare the cleavage efficiency of all metal complexes in the two different ligand environments. In this assay, Cu(II), Ni(II), Co(II), and Zn(II) exhibit more cleavage efficiency than other metal ions. This article was submitted by the authors in English.  相似文献   

9.
A series of copper(II) complexes containing 6‐methyl‐2‐oxo‐1,2‐dihydroquinoline‐3‐carboxaldehyde‐derived Schiff bases have been synthesized and characterised using various analytical and spectroscopic techniques. X‐ray crystallographic analysis confirmed the true coordinating nature of ligands with copper ion. The ligands exhibited ONS tridentate neutral and monobasic coordination. The spectroscopic results evidenced the interaction of the ligands and their copper(II) complexes with nucleic acid/serum albumin. Further, the complexes showed significant activity against human skin cancer cell line (A431) and less toxicity against human keratinocyte cell line (HaCaT). Acridine orange/propidium iodide dual staining studies indicated that the major cause of A431 cell death was through necrosis. By comparing the biological activity of all the ligands, Cu(II) complexes and standard (cisplatin), complex [Cu(H‐6MOQtsc‐Ph)(H2O)]?NO3 ( 4 ) exhibited better activity than others, the activity being arranged as follows: 4  >  1  > cisplatin >  3  >  2 .  相似文献   

10.
Three new diclofenac‐based copper(II) complexes, namely tetrakis{μ‐2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O:O′}bis(methanol‐κO)copper(II), [Cu2(μ‐dicl)4(CH3OH)2] ( 1 ), bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1‐vinyl‐1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(vim)2] ( 2 ), and bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(im)2] ( 3 ) [dicl is diclofenac (C14H10Cl2NO2), vim is 1‐vinylimidazole (C5H6N2) and im is imidazole (C3H4N2)], have been synthesized and characterized by elemental analysis, FT–IR spectroscopy, thermal analysis and single‐crystal X‐ray diffraction. X‐ray diffraction analysis shows that complex 1 consists of dimeric units in which the dicl ligand exhibits a bidentate syn,syn‐μ2 coordination mode linking two copper(II) centres. Complexes 2 and 3 have mononuclear units with the general formula [Cu(dicl)2L2] (L is vim or im) in which the CuII ions are octahedrally coordinated by two L and two dicl chelating ligands. The L and dicl ligands both occupy the trans positions of the coordination octahedron. The different coordination modes of dicl in the title complexes were revealed by Fourier transform IR (FT–IR) spectroscopy. The spin matching between the copper(II) centres in the dimeric [Cu2(μ‐dicl)4(CH3OH)2] units was also confirmed by magnetic data to be lower than the spin‐only value and electron paramagnetic resonance (EPR) spectra. The thermal properties of the complexes were investigated by thermogravimetric (TG) and differential thermal analysis (DTA) techniques.  相似文献   

11.
This work describes the synthesis of copper(II) complexes, their identification using spectroscopic and electrochemical methods, structural characterization with X‐ray diffraction and density functional theory calculations (DFT), as well as their catalytic activity mimicking that of superoxide dismutase. Structural analysis revealed the formation of complexes with cyclization of ligands L1 and L2 with the formation of a heterocycle, 1,3‐oxazolidine. The DFT calculations confirmed this trend by stabilizing with lower energy. In addition, evaluations of mimetic enzymatic activity of complexes C1, C2, C3 and C4 revealed promising IC50 values compared to other results seen in the literature (IC50 = 0.22, 0.328, 0.55 and 0.92). Also, calf thymus DNA interactive experiments using UV–visible spectroscopy were conducted in the presence of the copper(II) complexes.  相似文献   

12.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from indole-3-carboxaldehyde and m-aminobenzoic acid were synthesized and characterized by elemental analysis, molar conductance, IR, UV–Vis, magnetic moment, powder XRD and SEM. The IR results demonstrate the bidentate binding mode of the ligand involving azomethine nitrogen and carboxylato oxygen atoms. The electronic spectral and magnetic moment results indicate that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex is square planar. Powder XRD and SEM indicate the crystalline state and surface morphology studies of the complexes. The antimicrobial activity of the synthesized ligand and its complexes were screened by disc diffusion method. The results show that the metal complexes were found to be more active than the ligand. The nuclease activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence of H2O2. The Cu(II) complex showed increased nuclease activity in the presence of an oxidant when compared to the ligand and other complexes.  相似文献   

13.
Three new heteroscorpionate ligands, (2‐hydroxyphenyl)bis(imidazol‐1‐yl)methane (HL1), (4‐diethylamino‐2‐hydroxyphenyl)bis(imidazol‐1‐yl)methane (HL2) and (5‐bromo‐2‐hydroxyphenyl)bis(imidazol‐1‐yl)methane (HL3), and their heteroleptic copper(II) complexes of the type [Cu(L1–3)diimine]ClO4 ( 1 – 6 ; where diimine =2,2′‐bipyridyl or 1,10‐phenanthroline) have been synthesized and characterized using spectroscopic methods. The molecular structure of ligand HL1 was determined by single‐crystal X‐ray diffraction. UV–visible, electron paramagnetic resonance and theoretical studies suggest a distorted square pyramidal geometry around copper(II) ion. Analyses of highest occupied and lowest unoccupied molecular orbitals have been used to explain the charge transfer taking place within the complexes. The antioxidant activities of the heteroscorpionate ligands and their heteroleptic copper(II) complexes were determined using ABTS, DPPH and H2O2 free radical scavenging assays with respect to standard antioxidant ascorbic acid. In molecular docking studies, the complexes showed π–π, hydrogen bonding, van der Waals and electrostatic interactions with fibroblast growth factor receptor kinase. In vitro cytotoxicity activities of ligands and copper(II) complexes were examined on human breast adenocarcinoma (MCF‐7), cervical (HeLa) and lung (A549) cancer cell lines and normal human dermal fibroblast cell line using MTT assay. Complex 4 exhibited higher anticancer activity than the other complexes against all three cancer lines, being more potent than the standard drug cisplatin.  相似文献   

14.
Vanadium(IV) Schiff base complexes (VOL1‐VOL3) were synthesized and characterized by elemental analysis, various spectral methods and single crystal XRD studies. Structural analysis of VOL2 reveals that the central vanadium ion in the complex is six coordinate with distorted octahedral geometry. Density functional theory (DFT) and time dependent (TD‐DFT) studies were used to understand the electronic transitions observed in the complexes in UV–Vis spectra. The electrochemical behavior of the complexes was investigated in acetonitrile medium exhibit quasi‐reversible one electron transfer. The DNA and BSA protein binding interaction of vanadium complexes has been explored by UV–Vis and fluorescence spectral methods and viscosity measurements reveal that the complexes interact with CT‐DNA through intercalation mode and follows the order VOL1 < VOL3 < VOL2. The complexes exhibit binding interactions with BSA protein. The complexes act as chemical nuclease and cleave DNA in the presence of H2O2. The 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) assay was used to evaluate the radical scavenging activity demonstrate the antioxidant property of the complexes. The antimicrobial activity was screened for several microorganisms, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli. The mimicking of vanadium haloperoxidase was investigated by the bromination of the organic substrate phenol red by vanadium complexes in the presence of bromide and H2O2.  相似文献   

15.
Two new acylhydrazone copper(II) complexes of 4‐hydroxy‐N′‐[(1E)‐1‐(4‐methylphenyl)ethylidene]benzohydrazide (HL1) and 4 ethyl [4‐({(2E)‐2‐[1‐(4‐methylphenyl)ethylidene]hydrazinyl}carbonyl)phenoxy]acetate (HL2) have been synthesized and characterized. The structures of both acylhydrazone and copper(II) complexes were identified by elemental analysis, infrared spectra, UV–visible electronic absorption spectra, magnetic susceptibility measurements, TGA and powder X‐ray diffraction. DNA binding and DNA cleavage activities of the synthesized copper complexes were examined by using UV‐visible titration and agarose gel electrophoresis, respectively. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The results indicate that all the complexes bind slightly to calf thymus DNA and cleavage pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide‐derived species and singlet oxygen (1O2) are the active oxidative species for DNA cleavage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Cd(II), Hg(II), and VO(IV) have been designed and synthesized from the Schiff base derived from cinnamidene-4-aminoantipyrine and 2-aminophenol by involving the carbonyl group of 4-aminoantipyrine. The structural features have been arrived from their elemental analyses, magnetic susceptibility, molar conduction, FAB mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of the ML2 type. The UV-Vis, magnetic susceptibility, and ESR spectral data of the complexes suggest an octahedral geometry around the central metal ion except the VO(IV) complex, which has a square-pyramidal geometry. The redox behavior of the copper and vanadyl complexes has been studied by cyclic voltammetry. The antimicrobial activity of the ligand and its complexes has been extensively studied on microorganisms such as Salmonella typhi, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Aspergillus niger, and Rhizoctonia bataicola. It has been found that most of the complexes have higher activities than that of the free ligand. The nuclease activity of the above metal complexes shows that the complexes cleave DNA through redox chemistry. In the presence of H2O2, the complexes are capable of cleaving calf thymus DNA. The text was submitted by the authors in English.  相似文献   

17.
A series of new macrocyclic binuclear copper(II) complexes of the type [Cu2L1–5(ClO4)](ClO4) ( 1 – 5 ) were synthesized by template condensation between precursor compounds 2,6‐bis(4‐aminoethylpiperazin‐1‐ylmethyl)‐4‐substituted phenols and 2,6‐diformyl‐4‐substituted phenols. The synthesized precursors and complexes were characterized using regular physicochemical techniques. The rate constant values obtained for the hydrolysis of 4‐nitrophenylphosphate were in the range 1.83 × 10−2–4.19 × 102 min−1. Antioxidant studies against 2,2′‐diphenyl‐1‐picrylhydrazyl revealed the antioxidant potency of the synthesized complexes. Binding studies of the complexes with calf thymus DNA were conducted using electronic, viscometric and voltammetric techniques, and the obtained results suggested a non‐covalent groove mode of binding. The oxidative cleavage of pBR322 DNA in the presence of co‐reactant H2O2 and radical scavengers showed single strand scission and involvement of H2O2 radical in the cleavage process. Molecular docking studies were performed to insert complexes into the crystal structures of 1BNA and VEGFR kinase at active sites to determine the possible binding mode and predominant binding interactions. In vitro cytotoxicity of the complexes was tested against human epidermoid carcinoma cells (A431) by MTT assay, which revealed the effective anticancer activity of the complexes. Live cell and fluorescent imaging of A431 cells showed that the complexes induce cell death through apoptosis.  相似文献   

18.
The coordination chemistry of mixed‐ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal–organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic–inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene‐2‐carboxylate (2‐TPC) and 2‐amino‐4,6‐dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X‐ray diffraction studies, namely (2‐amino‐4,6‐dimethoxypyrimidine‐κN)aquachlorido(thiophene‐2‐carboxylato‐κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena‐poly[copper(II)‐tetrakis(μ‐thiophene‐2‐carboxylato‐κ2O:O′)‐copper(II)‐(μ‐2‐amino‐4,6‐dimethoxypyrimidine‐κ2N1:N3)], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the CoII ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2‐TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2‐TPC ligand form an interligand N—H…O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R22(8) motif] via a pair of N—H…N hydrogen bonds. These interactions, together with O—H…O and O—H…Cl hydrogen bonds and π–π stacking interactions, generate a three‐dimensional supramolecular architecture. The one‐dimensional coordination polymer (II) contains the classical paddle‐wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2‐TPC ligands bridges two square‐pyramidally coordinated CuII ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one‐dimensional polymeric chains self‐assemble via N—H…O, π–π and C—H…π interactions, generating a three‐dimensional supramolecular architecture.  相似文献   

19.
Two new Schiff base-hydrazones bearing furan ring, (Z)-4-butoxy-N′-(furan-2-ylmethylene)benzohydrazide (IV) and (Z)-N′-(furan-2-ylmethylene)-4-(hexyloxy)benzohydrazide (V), as well as their Cu(II), Ni(II), and Zn(II) complexes have been synthesised and characterised. The DNA-binding and DNA-cleavage activities of both aroylhydrazone ligands and their transition metal complexes were examined using UV-VIS titration and agarose gel electrophoresis in the presence of an oxidative agent (H2O2). The results indicate that the copper complexes bind significantly to calf thymus DNA and effectively cleave pBR322 DNA whereas the nickel and zinc complexes interact slightly with DNA.  相似文献   

20.
A new ternary monocopper(II) complex with co‐ligands of 2,2′‐diamino‐4,4′‐bithiazole (dabt) and picrate (pic), namely [Cu(dabt)(pic)2], has been synthesized and characterized using elemental analyses, molar conductance measurements, infrared and electronic spectral studies and single‐crystal X‐ray diffraction. The crystal structure analyses revealed that the copper(II) ion has a {CuN2O4} distorted octahedral coordination environment. The hydrogen bonding interactions contribute to a three‐dimensional supramolecular structure in the crystal. The reactivity towards herring sperm DNA showed that the copper(II) complex can interact with DNA in the mode of intercalation. The molecular docking of the complex with DNA sequence d(ACCGACGTCGGT)2 demonstrated that the copper(II) complex is stabilized by hydrogen bonding interaction. The in vitro anticancer activities suggested that the copper(II) complex is active against selected tumor cell lines. The effects of the two co‐ligands in the copper(II) complex on DNA‐binding events and in vitro anticancer activity are preliminarily discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号