首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Purely organic radical ions dimerize in solution at low temperature, forming long, multicenter bonds, despite the metastability of the isolated dimers. Here, we present the first computational study of these π‐dimers in solution, with explicit consideration of solvent molecules and finite temperature effects. By means of force‐field and ab initio molecular dynamics and free energy simulations, the structure and stability of π‐[TCNE]22? (TCNE=tetracyanoethylene) dimers in dichloromethane have been evaluated. Although the dimers dissociate at room temperature, they are stable at 175 K and their structure is similar to the one in the solid state, with a cofacial arrangement of the radicals at an interplanar separation of approximately 3.0 Å. The π‐[TCNE]22? dimers form dissociated ion pairs with the NBu4+ counterions, and their first solvation shell comprises approximately 20 CH2Cl2 molecules. Among them, the eight molecules distributed along the equatorial plane of the dimer play a key role in stabilizing the dimer through bridging C?H???N contacts. The calculated free energy of dimerization of TCNE . ? in solution at 175 K is ?5.5 kcal mol?1. These results provide the first quantitative model describing the pairing of radical ions in solution, and demonstrate the key role of solvation forces on the dimerization process.  相似文献   

2.
In this work, we aimed to develop a dicyanomethyl radical that undergoes both reversible C−C bond formation/dissociation and metal-ligand coordination reactions to combine dynamic covalent chemistry (DCC) based on organic radicals with coordination chemistry. We have previously reported a dicyanomethyl radical conjugated with a triphenylamine ( 1 ⋅) that exhibits a monomer/dimer equilibrium between the σ-bonded dimer ( 12 ). We designed and synthesized a novel dicyanomethyl radical with a pyridyl group as a coordination point ( 2 ⋅) by replacing the phenyl group of 1 ⋅ with a 3-pyridyl group. We showed that 2 ⋅ is also in an equilibrium with the σ-bonded dimer ( 22 ) in solution and has suitable thermodynamic parameters for application in DCC. 22 coordinates to PdCl2 in a 2 : 2 ratio to selectively form a metallamacrocycle ( 22 )2(PdCl2)2, and its structure was clarified by single crystal X-ray analysis. Variable-temperature NMR, ESR, and electronic absorption measurements revealed that ( 22 )2(PdCl2)2 also undergoes the reversible C−C bond formation/dissociation reaction. Ligand-exchange experiment showed that 22 was liberated from ( 22 )2(PdCl2)2 by the addition of another ligand with a higher affinity for PdII. This work demonstrated that DCC based on dicyanomethyl radicals works orthogonally to metal-ligand coordination reactions.  相似文献   

3.
Radical cations of a heptathienoacene α,β‐substituted with four n‐decyl side groups (D4T7 . +) form exceptionally stable π‐dimer dications already at ambient temperature (Chem. Comm. 2011 , 47, 12622). This extraordinary π‐dimerization process is investigated here with a focus on the ultimate [D4T7 . +]2 π‐dimer dication and yet‐unreported transitory species formed during and after the oxidation. To this end, we use a joint experimental and theoretical approach that combines cyclic voltammetry, in situ spectrochemistry and spectroelectrochemistry, EPR spectroscopy, and DFT calculations. The impact of temperature, thienoacene concentration, and the nature and concentration of counteranions on the π‐dimerization process is also investigated in detail. Two different transitory species were detected in the course of the one‐electron oxidation: 1) a different transient conformation of the ultimate [D4T7 . +]2 π‐dimer dications, the stability of which is strongly affected by the applied experimental conditions, and 2) intermediate [D4T7]2 . + π‐dimer radical cations formed prior to the fully oxidized [D4T7]2 . + π‐dimer dications. Thus, this comprehensive work demonstrates the formation of peculiar supramolecular species of heptathienoacene radical cations, the stability, nature, and structure of which have been successfully analyzed. We therefore believe that this study leads to a deeper fundamental understanding of the mechanism of dimer formation between conjugated aromatic systems.  相似文献   

4.
We have established that bipyridinium radicals can be reversibly π‐dimerized under the combined effects of chemical (proton transfer) and electrochemical (electron transfer) stimuli. Our investigations also led to the discovery that a bis‐pyridinyl appended calixarene intermediate is involved in a fully reversible redox‐triggered σ‐dimerization process. The structure of the most stable intramolecular σ‐dimer was provided by computational chemistry and its complete conversion into a noncovalent π‐dimer could be triggered chemically by addition of protons, leading to the formation of protonated cation radicals. Theoretical data collected with the N‐methylated and N‐protonated π‐dimers also support the existence of multivariant orientations in π‐bonded dimers of viologen cation‐radicals.  相似文献   

5.
N‐Heterocyclic carbene (NHC)‐ and cyclic (alkyl)(amino)carbene (CAAC)‐stabilized borafluorene radicals have been isolated and characterized by elemental analysis, single‐crystal X‐ray diffraction, UV/Vis absorption, cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and theoretical studies. Both the CAAC–borafluorene radical ( 2 ) and the NHC–borafluorene radical ( 4 ) have a considerable amount of spin density localized on the boron atoms (0.322 for 2 and 0.369 for 4 ). In compound 2 , the unpaired electron is also partly delocalized over the CAAC ligand carbeneC and N atoms. However, the unpaired electron in compound 4 mainly resides throughout the borafluorene π‐system, with significantly less delocalization over the NHC ligand. These results highlight the Lewis base dependent electrostructural tuning of materials‐relevant radicals. Notably, this is the first report of crystalline borafluorene radicals, and these species exhibit remarkable solid‐state and solution stability.  相似文献   

6.
A Two series of oligothiophenes 2 (nT) (n=4,5), annelated with bicyclo[2.2.2]octene (BCO) units at both ends, and quaterthiophenes 3 a – c , annelated with various numbers of BCO units at different positions, were newly synthesized to investigate the driving forces of π‐dimerization and the structure–property relationships of the π‐dimers of oligothiophene radical cations. Their radical‐cation salts were prepared through chemical one‐electron oxidation by using nitrosonium hexafluoroantimonate. From variable‐temperature electron spin resonance and electronic absorption measurements, the π‐dimerization capability was found to vary among the members of the 2 (nT)+ . SbF6? series and 3 + . SbF6? series of compounds. To examine these results, density functional theory (DFT) calculations at the M06‐2X/6‐31G(d) level were conducted for the π‐dimers. This level of theory was found to successfully reproduce the previously reported X‐ray structure of ( 2 (3T))22+ having a bent π‐dimer structure with ciscis conformations. The absorption bands obtained by time‐dependent DFT calculations for the π‐dimers were in reasonable agreement with the experimental spectra. The attractive and repulsive forces for the π‐dimerization were divided into four factors: 1) SOMO–SOMO interactions, 2) van der Waals forces, 3) solvation, and 4) Coulomb repulsion, and the effects of each factor on the structural differences and chain‐length dependence are discussed in detail.  相似文献   

7.
Dynamic covalent bonds and their chemistry have been of particular interest both from a fundamental and materials science aspect. Demonstrated herein is that triphenylamine (TPA) and carbazole (Cz), substituted with a dicyanomethyl radical, are useful motifs for dynamic covalent chemistry as they have the appropriate bond strength between monomer units as well as high stability and synthetic simplicity. TPA and Cz units substituted by two dicyanomethyl radicals formed macrocyclic oligomers classified as novel types of azacyclophanes, and in particular, the TPA‐based diradical gave a cyclic dimer in almost quantitative yield. The cyclic oligomers exhibited thermo‐ and mechanochromic behavior resulting from the generation of radical species by intermonomer C?C bond cleavage.  相似文献   

8.
Alkynes usually oligomerize to give rings with a conjugated π‐electron system. In contrast, phosphaalkynes, R?C≡P, frequently give compounds with polycyclic structures, which are thermodynamically more stable than the corresponding π‐conjugated isomers. The syntheses of the first C3P3 tricyclic compounds are reported with either radical or cationic ground states stabilized by cyclic (alkyl)(amino)carbenes (CAACs). These compounds may be considered as examples of tricarbontriphosphide coordinated by carbenes and are likely formed via trimerization of the corresponding mono‐radicals CAAC‐CP.. The mechanism for the formation of these tricarbontriphosphide radicals has been rationalized by a combination of experiments and DFT calculations.  相似文献   

9.
Whereas low‐temperature (?78 °C) reaction of the lithium dithiolene radical 1 . with boron bromide gives the dibromoboron dithiolene radical 2 ., the parallel reaction of 1 . with (C6H11)2BCl (0 °C) affords the dicyclohexylboron dithiolene radical 3 .. Radicals 2 . and 3 . were characterized by single‐crystal X‐ray diffraction, UV/Vis, and EPR spectroscopy. The nature of these radicals was also probed computationally. Under mild conditions, 3 . undergoes unexpected thiourea‐mediated B?C bond activation to give zwitterion 4 , which may be regarded as an anionic dithiolene‐modified carbene complex of the sulfenyl cation RS+ (R=cyclohexyl).  相似文献   

10.
Stable BIII-subporphyrin-substituted dicyanomethyl radicals were synthesized by SNAr reaction of meso-bromo- or meso-chlorosubporphyrins with malononitrile followed by oxidation with PbO2. Different from previously reported dicyanomethyl radicals that underwent σ- or π-dimer formation both in the solid state and in solutions, subporphyrin-stabilized dicyanomethyl radicals exist as monomers in solutions even at low temperature. DFT calculations revealed efficient spin delocalization over the entire subporphyrin. In the solid state, these radicals form weak π-dimers with antiferromagnetic interactions depending on the crystal packing structures.  相似文献   

11.
Hydrazonyl radicals are known for their π‐electronic structures; however, their σ‐electronic structures have not been reported as yet. Herein, we show that readily accessible β,γ‐ and γ,δ‐unsaturated N‐trichloroacetyl and N‐trifluoroacetyl hydrazones can be conveniently converted into hydrazonyl σ radicals, which subsequently undergo 5‐exo‐trig radical cyclization at the N1 or N2 atom to form pyrazolines and azomethine imines, respectively.  相似文献   

12.
The formation of an unprecedented macrocycles‐in‐a‐macrocycle (MIM) superstructure by reversible radical–radical association of a triphenylamine based monomer terminated with three dicyanomethyl radicals is presented. The reaction yield is nearly quantitative and the obtained macrocycle contains three small dimeric macrocycles according to X‐ray crystallographic analysis. The six monomer molecules are linked by nine long dynamic covalent C(sp3)?C(sp3) bonds that all adopt a gauche conformation. Such a conformation favors the formation of a MIM structure rather than a 2D network with an all‐anti conformation. Two enantiomers with left‐/ right‐handed chirality exist in the single crystals of the superstructure.  相似文献   

13.
Designed site‐directed dimerization of the monoanion radicals of a π‐bowl in the solid state is reported. Dibenzo[a,g]corannulene (C28H14) was selected based on the asymmetry of the charge/spin localization in the C28H14.? anion. Controlled one‐electron reduction of C28H14 with Cs metal in diglyme resulted in crystallization of a new dimer, [{Cs+(diglyme)}2(C28H14?C28H14)2?] ( 1 ), as revealed by single crystal X‐ray diffraction study performed in a broad range of temperatures. The C?C bond length between two C28H14.? bowls (1.560(8) Å) measured at ?143 °C does not significantly change upon heating of the crystal to +67 °C. The single σ‐bond character of the C?C linker is confirmed by calculations. The trans‐disposition of two bowls in 1 is observed with the torsion angles around the central C?C bond of 172.3(5)° and 173.5(5)°. A systematic theoretical evaluation of dimerization pathways of C28H14.? radicals confirmed that the trans‐isomer found in 1 is energetically favored.  相似文献   

14.
Guanine radicals are important reactive intermediates in DNA damage. Hydroxyl radical (HO.) has long been believed to react with 2′‐deoxyguanosine (dG) generating 2′‐deoxyguanosin‐N1‐yl radical (dG(N1‐H).) via addition to the nucleobase π‐system and subsequent dehydration. This basic tenet was challenged by an alternative mechanism, in which the major reaction of HO. with dG was proposed to involve hydrogen atom abstraction from the N2‐amine. The 2′‐deoxyguanosin‐N2‐yl radical (dG(N2‐H).) formed was proposed to rapidly tautomerize to dG(N1‐H).. We report the first independent generation of dG(N2‐H). in high yield via photolysis of 1 . dG(N2‐H). is directly observed upon nanosecond laser flash photolysis (LFP) of 1 . The absorption spectrum of dG(N2‐H). is corroborated by DFT studies, and anti‐ and syn‐dG(N2‐H). are resolved for the first time. The LFP experiments showed no evidence for tautomerization of dG(N2‐H). to dG(N1‐H). within hundreds of microseconds. This observation suggests that the generation of dG(N1‐H). via dG(N2‐H). following hydrogen atom abstraction from dG is unlikely to be a major pathway when HO. reacts with dG.  相似文献   

15.
The free radicals 3‐ethoxy‐2‐(ethoxycarbonyl)‐3‐oxopropyl ( 1 .) and 3‐ethoxy‐2‐(ethoxycarbonyl)‐2‐methyl‐3‐oxopropyl ( 2 .) were generated by photolysis of perester precursors in i) hexane solution, ii) in the presence of β‐cyclodextrin, and iii) in NaY zeolite. While free radicals in solution are reluctant to rearrange, they do so when encapsulated in β‐cyclodextrin or NaY zeolite. The coenzyme‐B12‐dependent enzymic rearrangement of methylmalonyl‐CoA to succinyl‐CoA could be mimicked by photochemical generation of an analogue of the putative intermediate radical in a molecular container.  相似文献   

16.
We report the synthesis and characterisation of new examples of meso‐hydroxynickel(II) porphyrins with 5,15‐diphenyl and 10‐phenyl‐5,15‐diphenyl/diaryl substitution. The OH group was introduced by using carbonate or hydroxide as nucleophile by using palladium/phosphine catalysis. The NiPor?OHs exist in solution in equilibrium with the corresponding oxy radicals NiPor?O.. The 15‐phenyl group stabilises the radicals, so that the 1H NMR spectra of {NiPor?OH} are extremely broad due to chemical exchange with the paramagnetic species. The radical concentration for the diphenylporphyrin analogue is only 1 %, and its NMR line‐broadening was able to be studied by variable‐temperature NMR spectroscopy. The EPR signals of NiPor?O. are consistent with somewhat delocalised porphyrinyloxy radicals, and the spin distributions calculated by using density functional theory match the EPR and NMR spectroscopic observations. Nickel(II) meso‐hydroxy‐10,20‐diphenylporphyrin was oxidatively coupled to a dioxo‐terminated porphodimethene dyad, the strongly red‐shifted electronic spectrum of which was successfully modelled by using time‐dependent DFT calculations.  相似文献   

17.
Salts that contain radical cations of benzidine (BZ), 3,3′,5,5′‐tetramethylbenzidine (TMB), 2,2′,6,6′‐tetraisopropylbenzidine (TPB), and 4,4′‐terphenyldiamine (DATP) have been isolated with weakly coordinating anions [Al(ORF)4]? (ORF=OC(CF3)3) or SbF6?. They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of benzidine or its alkyl‐substituted derivatives in CH2Cl2. The salts were characterized by UV absorption and EPR spectroscopy as well as by their single‐crystal X‐ray structures. Variable‐temperature UV/Vis absorption spectra of BZ . +[Al(ORF)4]? and TMB . +[Al(ORF)4]? in acetonitrile indicate an equilibrium between monomeric free radical cations and a radical‐cation dimer. In contrast, the absorption spectrum of TPB . +SbF6? in acetonitrile indicates that the oxidation of TPB only resulted in a monomeric radical cation. Single‐crystal X‐ray diffraction studies show that in the solid state BZ and its methylation derivative (TMB) form radical‐cation π dimers upon oxidation, whereas that modified with isopropyl groups (TPB) becomes a monomeric free radical cation. By increasing the chain length, π stacks of π dimers are obtained for the radical cation of DATP. The single‐crystal conductivity measurements show that monomerized or π‐dimerized radicals (BZ . +, TMB . +, and TPB . +) are nonconductive, whereas the π‐stacked radical (DATP . +) is conductive. A conduction mechanism between chains through π stacks is proposed.  相似文献   

18.
The dynamics of free‐radical species in a model cellular system are examined by measuring the formation and decay of ascorbate radicals within a liposome with pulse radiolysis techniques. Upon pulse radiolysis of an N2O‐saturated aqueous solution containing ascorbate‐loaded liposome vesicles, ascorbate radicals are formed by the reaction of OH. radicals with ascorbate in unilamellar vesicles exclusively, irrespective of the presence of vesicle lipids. The radicals are found to decay rapidly compared with the decay kinetics in an aqueous solution. The distinct radical reaction kinetics in the vesicles and in bulk solution are characterized, and the kinetic data are analyzed.  相似文献   

19.
Most aminyl radicals studied so far are resonance‐stabilized by neighboring heteroatoms, and those without such stabilization are usually short‐lived. We report herein that subporphyrin meso ‐2,4,6‐trichlorophenylaminyl radicals and a bis(5‐subporphyrinyl)aminyl radical are fairly stable under ambient conditions without such stabilization. The subporphyrin meso ‐2,4,6‐trichlorophenylaminyl radical crystal structure displays a characteristically short Cmeso −N bond and a perpendicular arrangement of the meso ‐arylamino group. The stabilities of these radicals have been ascribed to extensive spin delocalization over the subporphyrin π‐electronic network as well as steric protection around the aminyl radical center.  相似文献   

20.
The reactions of .OH radicals with deoxyribose, DR, form five different DR. radicals, only one of which is transformed into malondialdehyde (MDA)‐like products. The radiolytic yield of the MDA‐like products increases with the increase in the DR concentration indicating that some of the initially formed “unproductive” radicals react with DR to form the “productive” radicals. The yield of the MDA‐like products also increases with the dose rate delivered to the solution suggesting that the formation of the MDA‐like products involves the reaction of the “productive” radicals with a radical. The addition of ascorbate, AH?, to the solution decreases the yield of the MDA‐like products as expected from the relative rates of the reaction of DR and AH? with .OH radicals. On the other hand the addition of the exogenous thiol, N‐acetylcysteine (NAC), to the solutions decreases the yield of the MDA‐like products considerably more than expected from the rate constants of the reaction with .OH radicals. The addition of the endogenous thiol, glutathione (GSH), to the solutions affects the yield of the MDA‐like products at low concentration less than expected and at “high” concentrations more than expected from the rate constant of the reaction. Addition of low concentration of AH? to solutions containing GSH increases considerably its antioxidant activity whereas addition of small concentrations of AH? to solutions containing NAC has no effect on its antioxidant activity. The results point out that the DR. radicals react differently with NAC and GSH and that the GS. and NAC. radicals react differently with DR, the GS. radical being considerably more active than the NAC. radical. Thus it has to be concluded that the relative activity of antioxidants depends also on the rate constants of many secondary reactions and on the concentrations of all the solutes present in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号