首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Pd(L1)(C,N)]CF3SO3 and [Pd(L2)(C,N)]CF3SO3 (L1 = 2,2′ ‐bipyridine, L2 = 1,10‐phenanthroline and C,N = benzylamine) novel orthopalladated complexes have been synthesized and characterized using various techniques. The binding of the complexes with native calf thymus DNA (CT‐DNA) was monitored using UV–visible absorption spectrophotometry, fluorescence spectroscopy and thermal denaturation studies. Our results indicate that these complexes can strongly bind to CT‐DNA via partial intercalative mode. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with the complexes shows that the fluorescence quenching mechanism of BSA is a static process. The results of site‐competitive replacement experiments with specific site markers clearly indicate that the complexes bind to site I of BSA. Notably, the complexes exhibit significant in vitro cytotoxicity against two human cancer cell lines (Jurkat and MCF‐7) with IC50 values varying from 37 to 53 μM. Finally, a molecular docking experiment effectively proves the binding of the Pd(II) complexes to DNA and BSA.  相似文献   

2.
A novel light‐active magnetic Pd complex as a photocatalyst was prepared through bonding organometallics to mesoporous silica channels formed on the surface of silica‐coated iron oxide nanoparticles. The nanocomposite (denoted as Fe3O4@SiO2@m‐SiO2@PDA‐Pd(0); PDA = 1,10‐phenanthroline‐2,9‐dicarbaldehyde) is more efficient and has higher photocatalytic capability in the degradation of 2,4‐dichlorophenol under visible light irradiation compared with virgin Pd complex (PDA‐Pd). This noteworthy photodegradation activity can be due to the high dispersion of Pd nanoparticles. High yield, low reaction time and non‐toxicity of the catalyst are the main merits of this protocol. Also magnetic separation is an environmentally friendly alternative method for the separation and recovery of the catalyst, since it minimizes the use of solvents and auxiliary materials, reduces operation time and minimizes catalyst loss by preventing mass loss and oxidation. The produced Pd catalyst was characterised using various techniques. Furthermore, transmission electron microscopy characterization was used for determining the structural properties of the Pd nanocatalyst.  相似文献   

3.
A full account of our recently communicated room temperature alcohol oxidation using reduced polyoxovanadates (r‐POV s) is presented. Extensive optimizations revealed optimal conditions employing 0.02 equiv. of r‐POV catalyst Cs5(V14As8O42Cl), 5 equiv. tert‐butyl hydrogen peroxide (t BuOOH ) as the terminal co‐oxidant, in an acetone solvent for the quantitative oxidation of aryl‐substituted secondary alcohols to their ketone products. The substrate scope tolerates most aryl substituted secondary alcohols in good to quantitative yields while alkyl secondary and primary activated alcohols were sluggish in comparison under similar conditions. Catalyst recyclability was successful on a 1.0 mmol scale of starting alcohol 1‐phenylethanol. The oxidation was also successfully promoted by the VIV /VV mixed valent polyoxovanadate (POV ) Cs11Na3Cl5(V15O36Cl). Finally, a third POV , Cs2.64(V5O9)(AsO4)2, was investigated for catalytic activity using our established reaction protocol, but proved ineffective as compared to the other two r‐POV catalysts. This study expands the field of POM ‐mediated alcohol oxidations to include underexplored r‐POV catalysts. While our catalysts do not supplant the best catalysts known for the transformation, their study may inform the development of other novel oxidative transformations mediated by r‐POV s.  相似文献   

4.
Reactions of 1‐((2‐hydroxy‐5‐R‐phenylimino)methyl)naphthalen‐2‐ols (H2Ln , n  = 1–3 for R = H, Me, Cl, respectively) with [Pd(PPh3)2Cl2] and Et3N in toluene under reflux produced three new mononuclear square‐planar palladium(II) complexes with the general formula [Pd(Ln )(PPh3)] ( 1 , R = H; 2 , R = Me; 3 , R = Cl). All the complexes were characterized using elemental analysis, solution conductivity and various spectroscopic (infrared, UV–visible and NMR) measurements. Molecular structures of 1 , 2 , 3 were confirmed using single‐crystal X‐ray diffraction analysis. In each complex, the fused 5,6‐membered chelate rings forming phenolate‐O, azomethine‐N and naphtholate‐O donor (Ln )2− and the PPh3 form a square‐planar ONOP coordination environment around the metal centre. Infrared and NMR spectroscopic features of 1 , 2 , 3 are consistent with their molecular structures. Electronic spectra of the three complexes display several strong primarily ligand‐centred absorption bands in the range 322–476 nm. All the complexes were found to be effective catalysts for carbon–carbon cross‐coupling reactions of arylboronic acids with aromatic and heteroaromatic aldehydes to form the corresponding diaryl ketones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The structure of {[Zn(O2CC6H4NO2m)(1,10‐phenanthroline)2]O2CC6H4NO2m}·2H2O·HO2CC6H4NO2m features chelating m‐nitrobenzoate and 1,10‐phenanthroline ligands so that a distorted octahedron N4O2 coordination geometry results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Three novel water‐soluble copper(II) complexes – {[Cu(phen)(trp)]ClO4·3H2O}n ( 1 ), {[Cu(4‐mphen)(trp)]ClO4·3H2O}n ( 2 ) and [[Cu(dmphen)(trp)(MeOH)][Cu(dmphen)(trp)(NO3)]]NO3 ( 3 ) (phen: 1,10‐phenanthroline; 4‐mphen: 4‐methyl‐1,10‐phenanthroline; dmphen: 4,7‐dimethyl‐1,10‐phenanthroline; trp: l ‐tryptophan) – have been synthesized and characterized using various techniques. Complexes 1 and 2 are isostructural, and exist as one‐dimensional coordination polymers. Complex 3 consists of two discrete copper(II) complexes containing [Cu(trp)(dmphen)(MeOH)]+, [Cu(trp)(dmphen)(NO3)] and one nitrate anion. The binding interaction of the complexes with calf thymus DNA (CT‐DNA) was investigated using thermal denaturation, electronic absorption and emission spectroscopic methods, revealing that the complexes could interact with CT‐DNA via a moderate intercalation mode. The binding activity of the complexes to CT‐DNA follows the order: 3  >  2 > 1 . The pUC19 DNA cleavage activity of the complexes was investigated in the absence and presence of external agents using the agarose gel electrophoresis method. Especially, in the presence of H2O2 as an activator, the pUC19 DNA cleavage abilities of the complexes are clearly enhanced at low concentration. Addition of hydroxyl radical scavenger dimethylsulfoxide shows a marked inhibition of the pUC19 DNA cleavage activity of the complexes. In vitro cytotoxic effect of the complexes was examined on human tumor cell lines (Caco‐2, A549 and MCF‐7) and healthy cells (BEAS‐2B). The potent cytotoxic effect of complex 3 , with IC50 values of 1.04, 1.16 and 1.72 μM, respectively, is greater relative to clinically used cisplatin (IC50 = 22.70, 31.1 and 22.2 μM) against the Caco‐2, A549 and MCF‐7 cell lines.  相似文献   

7.
The solvent-free conditions were employed to synthesise symmetrical Schiff base ligand from 2,6-diaminopyridine with cinnamaldehyde in (1 min) with a fair yield utilizing formic acid as a catalyst. Through coordination chemistry, new heteroleptic complexes of Cu(II), Co(II), Ni(II), Pt(II), Pd(II) and Zn(II) were achieved from Schiff base as a primary chelator (L1) and 2,2′‐bipyridine (2,2′-bipy) as a secondary chelator (L2). The prepared compounds have been characterized by elemental analysis, molar conductivity, magnetic susceptibility, FTIR, 1H NMR, UV–visible, mass spectrometry, and thermal gravimetric analysis, and screened in vitro for their potential as antibacterial activity by the agar well diffusion method. The metal complexes were formulated as [M (L1) (L2) (X)] YnH2O, L1 = Schiff base, L2 = 2,2′-bipy, (M = Cu(II), Co(II), Zn(II), Y = 2NO3, n = 1), (M = Ni(II), X = 2H2O, Y = 2NO3, n = 0) and (M = Pd(II) Pt(II), Y = 2Cl, n = 0). Both L1 and L2 act as a neutral bidentate ligand and coordinates via nitrogen atoms of imine and 2,2′-bipy to metal ions. The metal complexes were found to be electrolytic, with square-planar heteroleptic Cu(II), Co(II), Pt(II), and Pd(II) chelates and octahedral Ni(II) complex. As well as tetrahedral geometry, has been proposed for the complex of Zn(II). Furthermore, the biological activity study revealed that some metal chelates have excellent activity than Schiff base when tested against Gram-negative and Gram-positive strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Finally, it was found that the Zn(II) and Pd(II) complexes were more effective against both types of bacteria tested than the imine and other metal complexes.  相似文献   

8.
A series of Pd and Pd‐Ga bimetallic catalysts were prepared by a co‐impregnation method for 2‐ethylanthraquinone (EAQ) hydrogenation to produce hydrogen peroxide. Compared with 0.6Pd catalyst, the hydrogenation efficiency of 0.6Pd1.2Ga catalyst (11.9 g L?1) increases by 32.2%, and the stability of 0.6Pd1.2Ga catalyst is also higher than that of 0.6Pd catalyst. The structures of the samples were determined by N2 adsorption–desorption, ICP, XRD, CO chemisorption, TEM, H2‐TPR, in situ CO‐DRIFTS and XPS. The results suggest that incorporation of Ga species improves Pd dispersion and generates a strong interaction between Ga2O3 and Pd interface or between Pd and support. DFT calculation results indicate that the strong adsorption of carbonyl group on Ga2O3/Pd interface facilitates the activation of EAQ and promotes the hydrogenation efficiency.  相似文献   

9.
The structure of the title compound, [Co(C12H8N2)(H2O)4](NO3)2, consists of tetra­aqua­(1,10‐phenanthroline)cobalt(II) cations and nitrate anions. The Co atom is located on a twofold rotation axis and is coordinated by the two N atoms of a 1,10‐phenanthroline ligand and four O atoms of water mol­ecules. The cations and anions are linked by hydrogen‐bond inter­actions into a three‐dimensional supra­molecular network.  相似文献   

10.
Two one‐dimensional (1D) coordination polymers (CPs), namely catena‐poly[[[aqua(2,2′‐bipyridine‐κ2N,N′)(nitrato‐κO)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C10H8N2)(C13H14N2)(H2O)]·NO3}n ( 1 ), and catena‐poly[[[aqua(nitrato‐κO)(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′] nitrate], {[Cu(NO3)(C12H8N2)(C13H14N2)(H2O)]·NO3}n ( 2 ), have been synthesized using [Cu(NO3)(NN)(H2O)2]NO3, where NN = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen), as a linker in a 1:1 molar ratio. The CPs were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray structure determination. The 1,3‐bis(pyridin‐4‐yl)propane (dpp) ligand acts as a bridging ligand, leading to the formation of a 1D polymer. The octahedral coordination sphere around copper consists of two N atoms from bpy for 1 or phen for 2 , two N atoms from dpp, one O atom from water and one O atom from a coordinated nitrate anion. Each structure contains two crystallographically independent chains in the asymmetric unit and the chains are linked via hydrogen bonds into a three‐dimensional network.  相似文献   

11.
Triazole‐based ligands, tris (triazolyl)methanol (Htbtm), bis (triazolyl)‐phenylmethanol (Hbtm), and phenyl (pyridin‐2‐yl)(triazolyl)methanol (Hpytm), with differences in ligand denticity (i.e., bidentate and tridentate) and type of N donors (i.e., triazole and pyridine) were functionalized onto a silica support to produce the corresponding SiO2‐ L ( L  = tbtm, btm, pytm). Subsequent reactions with Pd (CH3COO)2 in CH2Cl2 yielded Pd/SiO2‐ L . ICP‐MS reveals that Pd loadings are higher with increased N loadings, resulting in the following trend: Pd/SiO2‐tbtm (0.83 mmol Pd g?1) > Pd/SiO2‐btm (0.65 mmol Pd g?1) ~ Pd/SiO2‐pytm (0.63 mmol Pd g?1). Meanwhile, TEM images of the used Pd/SiO2‐ L catalysts after the first catalytic cycle show that the mean size of Pd NPs is highest with Pd/SiO2‐pytm (8.5 ± 1.5 nm), followed by Pd/SiO2‐tbtm (6.4 ± 1.6 nm) and Pd/SiO2‐btm (4.8 ± 1.3 nm). Based on TONs, catalytic studies toward aerobic oxidation of benzyl alcohol to benzaldehyde at 60 °C in EtOH showed that Pd/SiO2‐pytm possessed the most active surface Pd(0) atoms, most likely as a result of more labile properties of the pyridine–triazole ligand compared to tris‐ and bis (triazolyl) analogs. ICP‐MS and TEM analysis of Pd/SiO2‐btm indicate minimal Pd leaching and similar average Pd NPs sizes after 1st and 5th catalytic runs, respectively, confirming that SiO2‐btm is an efficient Pd NPs stabilizer. The Pd/SiO2‐btm catalyst was also active toward aerobic oxidation of various benzyl alcohol derivatives in EtOH and could be reused for at least 7 reaction cycles without a significant activity loss.  相似文献   

12.
Oxidative addition of 2‐phenylethylbromide (PhCH2CH2Br) to dimethylplatinum(II) complexes [PtMe2(NN)] ( 1a , NN = 2,2′‐bipyridine (bpy); 1b , NN = 1,10‐phenanthroline (phen)) afforded the new organoplatinum(IV) complexes [PtMe2(Br)(PhCH2CH2)(bpy)], as a mixture of trans ( 2a ) and cis ( 3a ) isomers, and [PtMe2(Br)(PhCH2CH2)(phen)], as a mixture of trans ( 2b ) and cis ( 3b ) isomers, respectively. The new Pt(IV) complexes were readily characterized using multinuclear (1H and 13C) NMR spectroscopy and elemental microanalysis. The crystal structure of 2a was further determined using X‐ray crystallography indicating an octahedral geometry around the platinum centre. A comparison of reactivity of RCH2Br reagents (R = CH3, Ph or PhCH2) in their oxidative addition reactions with complex 1a , with an emphasis on the effects of the R groups of alkyl halides, was also conducted using density functional theory.  相似文献   

13.
Nanocatalysts Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 supported on multi‐walled carbon nanotubes (MWCNTs) were successively synthesized by the chemical reduction method in the glycol‐water mixture solvent. Transmission electron microscopy results show that the prepared Pd, Pd8Ni2, Pd8Sn2 and Pd8Sn1Ni1 nanoparticles are uniformly dispersed on the surface of MWCNTs. The average particle sizes of the nanocatalysts are 3.5–3.8 nm. Electroactivity of the prepared catalysts towards oxidation of ethanol, 1‐propanol, 2‐propanol, n‐butanol, iso‐butanol and sec‐butanol (C2? C4 alcohols) in alkaline medium was studied by cyclic voltammetry and chronoamperometry. The current density obtained for the electrooxidation of C2? C4 alcohols depends on the catalysts and the various structures of the alcohols. Addition of Sn or/and Ni to Pd nanoparticles enhances the electroactivity of the Pd/MWCNT catalyst. Furthermore, the ternary Pd8Sn1Ni1/MWCNT catalyst presents the highest electroactivity for the oxidation of C2? C4 alcohols among the prepared catalysts. Electrocatalytic activity order among propanol isomers and butanol isomers is as follows respectively: 1‐propanol > 2‐propanol, and n‐butanol > iso‐butanol > sec‐butanol > tert‐butanol. This is consistent with the Mulliken charge value of the carbon atom bonded with hydroxyl group in the corresponding alcohol molecule.  相似文献   

14.
This paper reports a convenient, one‐pot, easily scalable and readily modifiable synthesis of a novel large‐ring bis(1,10‐phenanthrolinyl‐2,5‐pyrrole) macrocycle, H2LMC and describes its spectroscopic and electrochemical properties, protonation, cooperative amine binding, electrocatalysis of the oxidation of primary amines, photosensitization of the decomposition of dichloromethane, and the first lanthanide complexes of the hexaaza‐dianion LMC 2? including the novel dimer, [(NO3)( LMC )Eu(μ‐OH)Eu( LMC )(H2O)2]?2py.  相似文献   

15.
Novel Zn(II) complexes with the general formula: [Zn(furo)2(L)n], n = 1 or 2, (furo = furosemide = (4‐chloro‐2‐(furan‐2‐ylmethylamino)‐5‐sulfamoylbenzoic acid) were prepared. The complexes [Zn(furo)2(MeOH)2] ( 1 ; MeOH = methanol), [Zn(furo)2(2‐ampy)2] ( 2 ; 2‐ampy = 2‐aminopyridine), [Zn(furo)2(2‐ammepy)2] ( 3 ; 2‐ammepy = 2‐aminomethylpyridine), [Zn(furo)2(H2O)(2,2‐bipy)] ( 4 ; 2,2′‐bipy = 2,2′‐bipyridine), [Zn(furo)2(H2O)(4,4′‐bipy)] ( 5 ; 4,4′‐bipy = 4,4′‐bipyridine), [Zn(furo)2(1,10‐phen)] ( 6 ; 1,10‐phen = 1,10‐phenanthroline), [Zn(furo)2(2,9‐dmp)] ( 7 ; 2,9‐dmp = 2,9‐dimethyl‐1,10‐phenanthroline), and [Zn (furo)2(quin)2] ( 8 ; quin = quinoline) were synthesized and characterized using different techniques such as IR, UV–Vis, 1H NMR, 13C NMR, LC/MS and others. The crystal structure of complex ( 4 ) was determined using single‐crystal X‐ray diffraction. The anti‐bacterial activity of complexes ( 1 – 8 ) was tested using agar diffusion method against three gram‐positive (Staphylococcus aureus, Bacillus subtilis and Staphylococcus epidermidis) and three gram‐negative bacteria (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa). The obtained results showed different Inhibition Zone Diameters (IZD) with various anti‐bacterial activities against the selected gram‐positive and gram‐negative bacteria. In addition, the rate of bis‐(4‐nitrophenyl) phosphate hydrolysis was measured at different temperatures, different pH values and different concentrations. The rates for the eight complexes were in the following order: complex 4 > 2 > 5 > 8  >  7  >  6  >  3  >  1 .  相似文献   

16.
A new three-dimensional coordination polymer, [Ho(5-nip)(phen)(NO3)(DMF)] (5-nip=5-nitroisophthalic acid and phen=1,10-phenanthroline), was prepared and characterized by single crystal X-ray diffraction, elemental analysis, IR spectrum and DTG-DSC techniques. The results show that the title complex crystallizes in space group P2/m with a= 1.0906(3) nm, b =1.2804 (3) nm, c= 1.6987(4) nm, β=91.400(5)°, Z=4, Dc= 1.931 Mg/m^3, F(000)= 1352. Each Ho(Ⅲ) ion is nine-coordinated by one chelating bidentate and two monodentate bridging carboxylate groups, one chelating bidentate NO3 anion, one DMF molecule and one 1,10-phenanthroline molecule. The complex is constructed with one-dimensional ribbons featuring dinuclear units and the one-dimensional ribbons are further assembled into two-dimensional networks by strong π-π stacking interactions with the distance of 0.327 nm, then the networks are arranged into three-dimensional structure according to ABAB fashion. The complex exhibits high stability up to 600 ℃. Its enthalpy change of formation of the reaction in liquid-phase in solvent DMF was measured using an RD496-Ⅲ type microcalorimeter with a value of (-11.016±0.184) kJ·mol^-1.  相似文献   

17.
In the title copper(II) compound, [Cu(C7H4BrO2)(ClO4)(C12H8N2)], the Cu atom is five‐coordinated in a distorted square‐pyramidal geometry by the N‐ and O‐donors of 4‐bromo‐2‐formyl­phenolate, 1,10‐phenanthroline and perchlorate. Pairs of complexes are linked together by Cu⋯O(phenolate) and π–π stacking inter­actions between 4‐bromo‐2‐formyl­phenolate and 1,10‐phenanthroline. Along the crystallographic a axis, the dimers are linked by hydrogen bonds between a perchlorate O atom and a 4‐bromo‐2‐formyl­phenolate H atom, and by further π–π stacking inter­actions. Hydrogen bonding between the Br atom and a 1,10‐phenanthroline H atom takes place between the stacks of dimers.  相似文献   

18.

Sugar vinyl ethers and vinyl glycosides are conveniently synthesized by catalytic transfer vinylation with butyl vinyl ether, which serves as both the solvent and source of vinyl. The air‐stable catalyst (4,7‐diphenyl‐1,10‐phenanthroline)Pd(OOCCF3)2 is prepared in situ from commercially available components.  相似文献   

19.
The title compound, [Zn(C7H4NO4)2(C12H8N2)(H2O)], has been synthesized. X‐Ray analysis reveals that it is a neutral zinc(II) mononuclear carboxyl­ate complex based on mixed N‐ and O‐donor ligands. The Zn atom is five‐coordinate in a distorted trigonal–bipyramidal coordination environment involving two O atoms of two monodentate 2‐nitro­benzoate mol­ecules, two N atoms of a 1,10‐phenanthroline mol­ecule and one O atom of a water mol­ecule. The axial positions are occupied by a carboxyl­ate O atom from the 2‐nitro­benzoate ligand and an N atom from the 1,10‐phenanthroline ligand [N—Zn—O = 167.66 (9)°].  相似文献   

20.
Co–Pd bimetallic alloy nanoparticle catalysts were prepared from CoCl2, Pd(OAc)2 and several capping agents with Li(C2H5)3BH. The nanoparticle catalysts were applied to the aerobic oxidation of a variety of alcohols in water to give the corresponding carbonyl products. The catalyst was magnetically recovered and reused for further oxidation. The nanoparticle catalysts were characterized with TEM, ICP, and XPS analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号