首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advances in chemical syntheses have led to the formation of various kinds of nanoparticles (NPs) with more rational control of size, shape, composition, structure and catalysis. This review highlights recent efforts in the development of Pt and non‐Pt based NPs into advanced nanocatalysts for efficient oxygen reduction reaction (ORR) under fuel‐cell reaction conditions. It first outlines the shape controlled synthesis of Pt NPs and their shape‐dependent ORR. Then it summarizes the studies of alloy and core–shell NPs with controlled electronic (alloying) and strain (geometric) effects for tuning ORR catalysis. It further provides a brief overview of ORR catalytic enhancement with Pt‐based NPs supported on graphene and coated with an ionic liquid. The review finally introduces some non‐Pt NPs as a new generation of catalysts for ORR. The reported new syntheses with NP parameter‐tuning capability should pave the way for future development of highly efficient catalysts for applications in fuel cells, metal‐air batteries, and even in other important chemical reactions.  相似文献   

2.
We investigated the oxygen reduction reaction (ORR) mechanism on Pt nanoparticles (NPs) dispersed on several carbon blacks with various physicochemical properties (i. e. specific surface ranging from 80 to 900 m2 g−1, different graphitization degree, etc.). Using the kinetic isotope effect (KIE) along with various electrochemical characterizations, we determined that the rate determining step (RDS) of the ORR is a proton-independent step when the density of Pt NPs on the surface of the carbon support is high. Upon decrease of the density of Pt NPs on the surface, the RDS of the ORR starts involving a proton, as denoted by an increase of the KIE >1. This underlined the critical role played by the carbon support in the oxygen reduction reaction electrocatalysis by Pt supported on high surface area carbon.  相似文献   

3.
铂纳米线(Pt NWs)由于其独特的结构特点,比商业Pt/C具有更高的氧还原反应(ORR)比活性。在本工作中,我们将预先制备好的铂纳米颗粒(Pt NPs)引入到碳基体中,用于诱导生长Pt NWs,获得了均匀分布Pt NWs的阴极。通过改变Pt NP载量(0~0.015 mg·cm-2)和Pt NP来源(不同Pt含量的Pt/C)研究了所制备阴极的结构和性能。用扫描电镜对阴极表面进行了表征,并用透射电镜和X射线衍射分析了Pt NW的形貌和晶体结构。在单电池中分别进行了极化曲线和循环伏安曲线测试。当Pt NP来源为40% Pt/C且其载量为0.005 mg·cm-2时,制备的Pt NW阴极具有最佳的单电池性能和最大的电化学表面积(ECSA)。最后,提出了预制Pt NP影响Pt NWs分布的可能机制。  相似文献   

4.
The high cost of platinum electrocatalysts for the oxygen reduction reaction (ORR) has hindered the commercialization of fuel cells. An effective support can reduce the usage of Pt and improve the reactivity of Pt through synergistic effects. Herein, the vanadium nitride/graphitic carbon (VN/GC) nanocomposites, which act as an enhanced carrier of Pt nanoparticles (NPs) towards ORR, have been synthesized for the first time. In the synthesis, the VN/GC composite could be obtained by introducing VO3? and [Fe(CN)6]4? ions into the polyacrylic weak‐acid anion‐exchanged resin (PWAR) through an in‐situ anion‐exchanged route, followed by carbonization and a subsequent nitridation process. After loading only 10 % Pt NPs, the resulting Pt‐VN/GC catalyst demonstrates a more positive onset potential (1.01 V), higher mass activity (137.2 mA mg?1), and better cyclic stability (99 % electrochemical active surface area (ECSA) retention after 2000 cycles) towards ORR than the commercial 20 % Pt/C. Importantly, the Pt‐VN/GC catalyst mainly exhibits a 4 e?‐transfer mechanism and a low yield of peroxide species, suggesting its potential application as a low‐cost and highly efficient ORR catalyst in fuel cells.  相似文献   

5.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

6.
《Journal of Energy Chemistry》2017,26(6):1160-1167
The changeable structure of 2 D graphene nanosheets makes the Pt-based nanoparticles(NPs) possess a low efficiency toward oxygen reduction reaction(ORR) and a short lifetime for proton exchange membrane fuel cells. Thus, a unique Ti C@graphene core-shell structure material with low surface energy is designed and prepared by an in situ forming strategy, and firstly applied as a stable support of Pt NPs.The as-prepared Pt/GNS@Ti C catalyst presents a high activity. Especially, its ORR stability is remarkably improved. Even after 15000 potential cycles, the half-wave potential and mass activity toward ORR have almost no change. This can be attributed to that the graphene nanosheet existing in a sphere shape effectively avoids the restacking or folding caused by the giant surface tension in 2 D graphene nanosheets,impeding the decrease of the triple-phase boundary on Pt NPs. Significantly, the power density of fuel cells with our novel catalyst reaches 853 m V cm~(–2) under a low Pt loading(0.25 mg Pt cm~(–2)) and H_2/Air conditions. These indicate the new ceramic@graphene core-shell nanocomposite is a promising application in fuel cells and other fields.  相似文献   

7.
Selective hydrogenation of substituted nitroarenes is an important reaction to obtain amines.Supported metal catalysts are wildly used in this reaction because the surface structure of supports can tune the properties of the supported metal nanoparticles (NPs) and promote the selectivity to amines.Herein,Pt NPs were immobilized on Fe OOH,Fe3O4andα-Fe2O3nanorods to synthesize a series of iron compounds supported Pt catalysts by liquid phase reduction me...  相似文献   

8.
A series of Fe3C/C‐Nx nanoparticles (NPs) with different nitrogen content are prepared by a simple one‐pot route. In the synthetic procedure, aniline and acetonitrile are simultaneously used as the carbon and nitrogen source. The effect of calcination temperature on the structural and functional properties of the materials is investigated. Magnetic measurement shows that the sample prepared at 800 °C (Fe3C/C‐N800 NPs) possesses the highest Ms value of 77.2 emu g?1. On testing as oxygen reduction reaction (ORR) catalysts, the sample prepared at 750 °C (Fe3C/C‐N750 NPs) shows the best ORR performance among the series, with a more positive onset potential (+0.99 V vs. RHE), higher selectivity (number of electron transfer n≈3.93), longer durability, and stronger tolerance against methanol crossover than commercial Pt/C catalysts in a 0.1 m KOH solution. Moreover, in acidic solution, the excellent ORR activity and stability are also exhibited.  相似文献   

9.
It is challenging to study the single semiconductor nanocrystal electrochemistry and photoelectrochemistry. The photocatalytic processes, such as the oxidation of methanol and iodide, that result from the electron–hole pair formed within a nanoparticle (NP) allow the detection of discrete current transient events assigned to single entities. Photocatalytic current amplification allows detection of collisions between the semiconductor NPs and the ultramicroelectrode that produce current transient. Staircase responses and blips in the i vs. t response indicate that irreversible and reversible NP/electrode interactions result depending on the experimental conditions. Dye sensitization increases the photocurrent magnitude of ZnO and TiO2 with respect to bare TiO2 NPs. The microelectrodes used are Pt, TiO2/Pt, TiO2/Au, and F-doped SnO2.  相似文献   

10.
Platinum nanoparticles (Pt NPs) on carbon black (CB) have been used as catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells for a while. However, this catalyst has suffered from aggregation and dissolution of Pt NPs as well as CB dissolution. In this study, we resolve those issues by developing perfluorosulfonic acid (PFSA)-functionalized Pt/graphene as a high-performance ORR catalyst. The noncovalently bonded PFSA remarkably decreases the dissolution and aggregation of Pt NPs. Moreover, unlike typical NP functionalization with other capping agents, PFSA is a proton conductor and thus efficiently develops a triple-phase boundary. These advantageous features are reflected in the improved cell performance in electrochemical active surface area, catalytic activity, and long-term durability, compared to those of the commercial Pt/C catalysts and graphene-based catalysts with no such treatment.  相似文献   

11.
Improving the electrocatalytic activity and durability of Pt‐based catalysts with low Pt content toward the oxygen reduction reaction (ORR) is one of the main challenges in advancing the performance of polymer electrolyte membrane fuel cells (PEMFCs). Herein, a designed synthesis of well‐defined Pd@Pt core–shell nanoparticles (NPs) with a controlled Pt shell thickness of 0.4–1.2 nm by a facile wet chemical method and their electrocatalytic performances for ORR as a function of shell thickness are reported. Pd@Pt NPs with predetermined structural parameters were prepared by in situ heteroepitaxial growth of Pt on as‐synthesized 6 nm Pd NPs without any sacrificial layers and intermediate workup processes, and thus the synthetic procedure for the production of Pd@Pt NPs with well‐defined sizes and shell thicknesses is greatly simplified. The Pt shell thickness could be precisely controlled by adjusting the molar ratio of Pt to Pd. The ORR performance of the Pd@Pt NPs strongly depended on the thickness of their Pt shells. The Pd@Pt NPs with 0.94 nm Pt shells exhibited enhanced specific activity and higher durability compared to other Pd@Pt NPs and commercial Pt/C catalysts. Testing Pd@Pt NPs with 0.94 nm Pt shells in a membrane electrode assembly revealed a single‐cell performance comparable with that of the Pt/C catalyst despite their lower Pt content, that is the present NP catalysts can facilitate low‐cost and high‐efficient applications of PEMFCs.  相似文献   

12.
Seven-nanometer FePt nanoparticles (NPs) were synthesized and assembled on graphene (G) by a solution-phase self-assembly method. These G/FePt NPs were a more active and durable catalyst for oxygen reduction reaction (ORR) in 0.1 M HClO(4) than the same NPs or commercial Pt NPs deposited on conventional carbon support. The G/FePt NPs annealed at 100 °C for 1 h under Ar + 5% H(2) exhibited specific ORR activities of 1.6 mA/cm(2) at 0.512 V and 0.616 mA/cm(2) at 0.557 V (vs Ag/AgCl). As a comparison, the commercial Pt NPs (2-3 nm) had specific activities of 0.271 and 0.07 mA/cm(2) at the same potentials. The G/FePt NPs were also much more stable in the ORR condition and showed nearly no activity change after 10?000 potential sweeps. The work demonstrates that G is indeed a promising support to improve NP activity and durability for practical catalytic applications.  相似文献   

13.
Developing cost‐effective electrocatalysts for the oxygen reduction reaction (ORR) is a prerequisite for broad market penetration of low‐temperature fuel cells. A major barrier stems from the poisoning of surface sites by nonreactive oxygenated species and the sluggish ORR kinetics on the Pt catalysts. Herein we report a facile approach to accelerating ORR kinetics by using a hydrophobic ionic liquid (IL), which protects Pt sites from surface oxidation, making the IL‐modified Pt intrinsically more active than its unmodified counterpart. The mass activity of the catalyst is increased by three times to 1.01 A mg?1Pt@0.9 V, representing a new record for pure Pt catalysts. The enhanced performance of the IL‐modified catalyst can be stabilized after 30 000 cycles. We anticipate these results will form the basis for an unprecedented perspective in the development of high‐performing electrocatalysts for fuel‐cell applications.  相似文献   

14.
H2O2 is a versatile chemical and can be generated by the oxygen reduction reaction (ORR) in proton donor solution in molecular solvents or room temperature ionic liquids (IL). We investigated this reaction at interfaces formed by eleven hydrophobic ILs and acidic aqueous solution as a proton source with decamethylferrocene (DMFc) as an electron donor. H2O2 is generated in colorimetrically detectable amounts in biphasic systems formed by alkyl imidazolium hexafluorophosphate or tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. H2O2 fluxes were estimated close to liquid|liquid interface by scanning electrochemical microscopy (SECM). Contrary to the interfaces formed by hydrophobic electrolyte solution in a molecular solvent, H2O2 generation is followed by cation expulsion to the aqueous phase. Weak correlation between the H2O2 flux and the difference between DMFc/DMFc+ redox potential and 2 electron ORR standard potential indicates kinetic control of the reaction.  相似文献   

15.
The development of superior non‐platinum electrocatalysts for enhancing the electrocatalytic activity and stability for the oxygen‐reduction reaction (ORR) and liquid fuel oxidation reaction is very important for the commercialization of fuel cells, but still a great challenge. Herein, we demonstrate a new colloidal chemistry technique for making structurally ordered PdCu‐based nanoparticles (NPs) with composition control from PdCu to PdCuNi and PtCuCo. Under the dual tuning on the composition and intermetallic phase, the ordered PdCuCo NPs exhibit better activity and much enhanced stability for ORR and ethanol‐oxidation reaction (EOR) than those of disordered PdCuM NPs, the commercial Pt/C and Pd/C catalysts. The density functional theory (DFT) calculations reveal that the improved ORR activity on the PdCuM NPs stems from the catalytically active hollow sites arising from the ligand effect and the compressive strain on the Pd surface owing to the smaller atomic size of Cu, Co, and Ni.  相似文献   

16.
Zeolite NaX was modified by Pt and Pt/Ru nanodispersed metallic clusters. The procedure of impregnation with acetylacetonate salt/acetone solution was applied. Scanning electron microscope analysis confirmed partial zeolite framework destruction. According to energy dispersive X-ray analysis, Pt/Ru ratio in sample was about 1. Electrochemical behavior of PtRu- and Pt-modified zeolites was investigated in alkaline solutions, 5 mM NaOH?+?1 M Na2SO4 and 0.1 M NaOH. The shape of cyclic voltammograms of 13XPtRu electrode, recorded in slightly alkaline solution, was greatly affected by the presence of hydrogen that remained in the sample after synthetic procedure. Oxygen reduction reaction (ORR) was investigated in an O2-saturated aqueous 0.1-M NaOH solution. The obtained Tafel slopes indicated ORR mechanism that involves one-electron discharge-determining step. According to Koutecky–Levich slope, the oxygen reduction reaction followed 4e? mechanism on both 13XPtRu and 13XPt electrode. The onset of ORR on 13XPtRu electrode was shifted toward more positive potentials in comparison to 13XPt electrode.  相似文献   

17.
The development of nonprecious metal-based electrocatalysts with remarkable catalytic activity and long-cycling lifespan toward oxygen reduction reaction (ORR) and evolution reaction (OER) is especially important for rechargeable zinc–air batteries (ZABs). Herein, monodispersed Co9S8 nanoparticles embedded in nitrogen-doped hierarchically porous hollow carbon spheres (Co9S8 NPs/NHCS) are synthesized through a template-assisted strategy followed by a co-assembly, thermal annealing, and sulfurization process. Benefiting from larger specific surface area, hierarchically porous hollow structure, and carbon nanotubes self-growth, the obtained Co9S8 NPs/NHCS-0.5 electrocatalyst exhibits decent performance for ORR (E1/2=0.85 V) and OER (E10=1.55 V). A rechargeable ZAB assembled using the Co9S8 NPs/NHCS-0.5 as air cathode delivers a maximum power density of 116 mW cm−2, high open circuit voltage of 1.47 V, and good durability (no obvious voltage decay after 1200 cycles (200 hours)). Such a hierarchically porous hollow structure of Co9S8 NPs/NHCS-0.5 provides a confined space shell and an interconnected hollow core to achieve outstanding bifunctional catalytic activity and cycling stability, which surpass the benchmark Pt/C-RuO2.  相似文献   

18.
Maximizing the platinum utilization in electrocatalysts toward oxygen reduction reaction (ORR) is very desirable for large‐scale sustainable application of Pt in energy systems. A cost‐effective carbon‐supported carbon‐defect‐anchored platinum single‐atom electrocatalysts (Pt1/C) with remarkable ORR performance is reported. An acidic H2/O2 single cell with Pt1/C as cathode delivers a maximum power density of 520 mW cm?2 at 80 °C, corresponding to a superhigh platinum utilization of 0.09 gPt kW?1. Further physical characterization and density functional theory computations reveal that single Pt atoms anchored stably by four carbon atoms in carbon divacancies (Pt‐C4) are the main active centers for the observed high ORR performance.  相似文献   

19.
Cu@Pt nanoparticles (NPs) are experimentally regarded as improved catalysts for NOx storage/reduction, with higher activities and selectivities compared with pure Pt or Cu NPs, and with inverse Pt@Cu NPs. Here, a density functional theory-based study on such NP models with different sizes and shapes reveals that the observed enhanced stability of Cu@Pt compared with Pt@Cu NPs is due to energetic reasons. On both types of core@shell NPs, charge is transferred from Cu to Pt, strengthening the NP cohesion energy in Pt@Cu NPs, and spreading charge along the surface in Cu@Pt NPs. The negative surface Pt atoms in the latter diminish the NO bonding owing to an energetic rise of the Pt bands, as detected by the appliance of the d-band model, although other factors, such as atomic low coordination or the presence of an immediate subsurface Pt atom do as well. A charge density difference analysis discloses a donation/back-donation mechanism in the NO adsorption.  相似文献   

20.
Redox reactions of solvated molecular species at gold‐electrode surfaces modified by electrochemically inactive self‐assembled molecular monolayers (SAMs) are found to be activated by introducing Au nanoparticles (NPs) covalently bound to the SAM to form a reactive Au–alkanedithiol–NP–molecule hybrid entity. The NP appears to relay long‐range electron transfer (ET) so that the rate of the redox reaction may be as efficient as directly on a bare Au electrode, even though the ET distance is increased by several nanometers. In this study, we have employed a fast redox reaction of surface‐confined 6‐(ferrocenyl) hexanethiol molecules and NPs of Au, Pt and Pd to address the dependence of the rate of ET through the hybrid on the particular NP metal. Cyclic voltammograms show an increasing difference in the peak‐to‐peak separation for NPs in the order Au<Pt<Pd, especially when the length of the alkanedithiol increases from octanedithiol to decanedithiol. The corresponding apparent rate constants, kapp, for decanedithiol are 1170, 360 and 14 s?1 for NPs of Au, Pt and Pd, respectively, indicating that the efficiency of NP mediation of the ET clearly depends on the nature of the NP. Based on a preliminary analysis rooted in interfacial electrochemical ET theory, combined with a simplified two‐step view of the NP coupling to the electrode and the molecule, this observation is referred to the density of electronic states of the NPs, reflected in a broadening of the molecular electron/NP bridge group levels and energy‐gap differences between the Fermi levels of the different metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号