首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Two approaches to the formation of ruthenium(II) complexes containing ligands with conjugated 2,2′:6′,2″-terpyridine (tpy), alkynyl and bithienyl units have been investigated. Bromination of 4′-(2,2′-bithien-5′-yl)-2,2′:6′,2″-terpyridine leads to 4′-(5-bromo-2,2’-bithien-5′-yl)-2,2′:6′,2″-terpyridine (1), the single crystal structure of which has been determined. The complexes [Ru(1)2][PF6]2 and [Ru(tpy)(1)][PF6]2 have been prepared and characterized. Sonogashira coupling of the bromo-substituent with (TIPS)CCH did not prove to be an efficient method of preparing the corresponding complexes with pendant alkynyl units. The reaction of 4′-ethynyl-2,2′:6’,2″-terpyridine with 5-bromo-2,2′-bithiophene under Sonogashira conditions yielded ligand 2, and the heteroleptic ruthenium(II) complex [Ru(2)(tpy)][PF6]2 has been prepared and characterized.  相似文献   

2.
The complex [Pt(5,5′-dmbipy)Cl4] (1) (5,5′-dmbipy is 5,5′-dimethyl-2,2′-bipyridine) was prepared from the reaction of H2PtCl6·6H2O with 5,5′-dimethyl-2,2′-bipyridine in methanol. The same method was employed to make [Pt(6-mbipy)Cl4] (2) (6-mbipy is 6-methyl-2,2′-bipyridine). Both complexes were characterized by elemental analysis, IR, UV–Vis, 1H NMR, 13C NMR and 195Pt NMR spectroscopy. Their solid state structures were determined by the X-ray diffraction method.  相似文献   

3.
Studies on the catalytic reduction of nitrite on carbon electrodes modified with Co(II) tetra-2,3-pyridinoporphyrazine (CoTppa, 1), N,N′,N′′,N′′′-tetramethyltetra-2,3-pyridinoporphyrazine ([CoTm-2,3-tppa]4+, 2) and Co(II) N,N′,N′′,N′′′-tetramethyltetra-3,4-pyridinoporphyrazine ([CoTm-3,4-tppa]4+, 3) are reported. There is a close correspondence between the proximity of the methyl groups to the porphyrazine ring and the catalytic activity of the porphyrazine complexes. Bulk electrolysis gave ammonia and hydroxylamine as some of the products. The catalytic activity of the cationic complex, 3, towards the detection of low concentrations of nitrite (<10−9 M) in water containing sodium sulfate, was compared with the activities of the anionic cobalt(II) tetrasulfophthalocyanine ([CoTSPc]4−, 4) and the mixed [CoIITm-3,4-tppa]4+·[CoTSPc]4− (5) complexes. Complex 5 showed the best catalytic activity of the three in that large currents were obtained for very low concentrations of nitrite.  相似文献   

4.
Three new Cu(II) supramolecular complexes [Cu(L1)Cl2]·2DMF (1), [Cu(L2)Cl2] (2) and [Cu(L3)Cl2]·DMF (3) (L1 = 3,3′-bis(2-benzimidazolyl)-2,2′-dipyridine, L2 = 3,3′- bis(N-ethyl-2-benzimidazolyl)-2,2′-dipyridine and L3 = 3,3′-bis(N-benzyl-2-benzimidazolyl)-2,2′-dipyridine) have been prepared and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray structural analysis of L1, L2·3.5H2O and L3·H2O indicates that all three ligands adopt the trans conformation with the two benzimidazole fragments located on opposite sides of the dipyridyl backbone. While in complexes 13, all the ligands display the cis conformation and behave as bidentate chelating reagents to coordinate with Cu(II). The inorganic chloride ions always act as a reliable hydrogen bonded acceptor in these structures, and the resulting C–HCl2Cu supramolecular synthons play a significant role in the formation and stabilization of the structures. Moreover, additional non-covalent interactions, such as C–Hπ, are also identified to extend the discrete (0-D) or low-dimensional (1-D) motifs into high-dimensional architectures.  相似文献   

5.
2-Thiophenemercuric chloride(I), on reaction with sodium or silver thiocyanate, silver azide, silver acetate, and silver trifluoromethanesulfonate gave the 2-thiocyanate (2), 2-azide (4), 2-acetate (5) and 2-trifluoromethanesulfonate (6), respectively. The thermal decompositions of these compounds, together with that of 2,2'-dithienyl mercury, have been studied. The 2-thiophenemercuric triflate (6) decomposes at room temperature to give 2,2'-dithienylmercury. The 2-azide (4), when treated with either cyclohexene or triphenylphosphine, gave only the 2,2'-dithienylmercury. All the 2-thiophenemercuric salts decompose at about 300°C to give only a black insoluble residue. With the aid of some control experiments and comparison with previous work on phenyl- and p-tolyl-mercuric salts, a mechanism is proposed to account for the results.  相似文献   

6.
Conjugated polymetallorotaxanes containing pentacoordinating units. The present paper reports the synthesis and cyclic voltammetry study of new conjugated polyrotaxanes containing penta-coordinating units around copper or zinc centres. The gathering and threading effect of these metal centres has been used to prepare the desired prerotaxanes, whose macrocyclic and linear components incorporate a tridentate chelate of the terpy type (terpy = 2,2′,6′,2″-terpyridine) and a phen (phen = 1,10-phenantroline) derivative, respectively. Electrochemical oxidative coupling of the end groups (thiophene or pyrrole) leads to the corresponding polymers. Ion-exchange processes, induced by demetalation/remetalation, have been investigated as well as the conductivity of the polymer films prepared.  相似文献   

7.
Synthesis of trans-3-(1'R*-hydroxyethyl)-4-(2',2'-dimethoxyethyl)-2-azetidinone (5), an important intermediate for the synthesis of thienamycin (1), was investigated starting from the isoxazoline derivatives 3 and 9. The most effective method was catalytic hydrogenation of trans-4-t-butoxycarbonyl-3-(2,2'-dimethoxyethyl)-5-methyl-isoxazoline (9) with Adams catalyst in acetic acid, followed by trimethylsilylation of the resulting epimeric aminoesters 11A and B, cyclization with EtMgBr, and deblocking. Novel reductions of the isoxazolines with sodium borohydride and nickel chloride or with diborane followed by catalytic hydrogenation were also reported.  相似文献   

8.
Chlorodiphenylphosphine and 2,2′-biphenylylenephosphorochloridite react with 2-hydroxy-2′-(1,4-bisoxo-6-hexanol)-1,1′-biphenyl to yield the new α,ω-bis(phosphorus-donor)-polyether ligands, 2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2 (1) and 2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8) (2). These ligands react with Mo(CO)4(nbd) to form the monomeric metallacrown ethers, cis-Mo(CO)4{2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2} (cis-3) and cis-Mo(CO)4{2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8)} (cis-4), in good yields. The X-ray crystal structures of cis-3 and cis-4 are significantly different, especially in the conformation of the metal center and the adjacent ethylene group. The very different 13C-NMR coordination chemical shifts of this ethylene group in cis-3 and cis-4 suggest that the solution conformations of these metallacrown ethers are also quite different. Both metallacrown ethers undergo cistrans isomerization in the presence of HgCl2. Although the cistrans equilibrium constants for the isomerization reactions are nearly identical, the isomerization of cis-3 is more rapid. Phenyl lithium reacts with cis-3 to form the corresponding benzoyl complexes but does not react with either trans-3 or cis-4. Both the slower rate of cistrans isomerization of cis-4 and its lack of reaction with PhLi are consistent with weaker interactions between the hard metal cations and the carbonyl oxygens in both trans-3 and cis-4.  相似文献   

9.
The synthesis of tris{5′-[methylbis(2-thienyl)silyl]2,2′-bithienyl-5-yl} methylsilane, a first-generation bithiophenesilane dendrimer, is described. The conditions of effective formation of methyltrithienylsilane were found; methyltris(5-bromo-2-thienyl)silane and a number of other monofunctional derivatives of methyltrithienylsilane were synthesized for the first time. The advantages and drawbacks of the Suzuki and Kumada reactions for the formation of bithienyl fragments in the synthesis of oligothienylsilane dendrimers are discussed.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 673–679, March, 2005.  相似文献   

10.
The ground- and excited-state structures for a series of Os(II) diimine complexes [Os(NN)(CO)2I2] (NN = 2,2′-bipyridine (bpy) (1), 4,4′-di-tert-butyl-2,2′-bipyridine (dbubpy) (2), and 4,4′-dichlorine-2,2′-bipyridine (dclbpy) (3)) were optimized by the MP2 and CIS methods, respectively. The spectroscopic properties in dichloromethane solution were predicted at the time-dependent density functional theory (TD-DFT, B3LYP) level associated with the PCM solvent effect model. It was shown that the lowest-energy absorptions at 488, 469 and 539 nm for 13, respectively, were attributed to the admixture of the [dxy (Os) → π*(bpy)] (metal-to-ligand charge transfer, MLCT) and [p(I) → π*(bpy)] (interligand charge transfer, LLCT) transitions; their lowest-energy phosphorescent emissions at 610, 537 and 687 nm also have the 3MLCT/3LLCT transition characters. These results agree well with the experimental reports. The present investigation revealed that the variation of the substituents from H → t-Bu → Cl on the bipyridine ligand changes the emission energies by altering the energy level of HOMO and LUMO but does not change the transition natures.  相似文献   

11.
Thermal cyclization of 3-R-5-chloro-1,2,4-triazoles (R = Cl, Ph) afforded 2,6,10-tri-R- tris[1,2,4]triazolo[1,5-a:1′,5′c:1″,5″-e][1,3,5]triazines 5 (R = Ph) and 7 (R = Cl). These compounds are first representatives of this class of heterocycles, whose structures were unambiguously established. Treatment of these compounds with nucleophiles (H2O/NaOH, NH3) results in the triazine ring opening to give compounds consisting of three 1,2,4-triazole rings linked in a chain. For example, treatment of cyclic compound 5 with aqueous alkali affords 3-phenyl-1-3-phenyl-1-(3-phenyl-1H-1,2,4-triazol-5-yl)-1,2,4-triazol-5-yl-1H-1,2,4-triazol-5-one. Treatment of 3,7,11-triphenyltris[1,2,4]triazolo[4,3-a:4′,3′c:4″,3″-e][1,3,5]triazine (2) with HCl/SbCl5 leads to the triazine ring opening giving rise to 5-(3-chloro-5-phenyl-1,2,4-triazol-4-yl)-3-phenyl-4-(5-phenyl-1H-1,2,4-triazol-3-yl)-1,2,4-triazole. Thermal cyclization of the latter produces 3,7,10-triphenyltris[1,2,4]triazolo[1,5-a:4′,3′c:4″,3″-e][1,3,5]triazine (13). Thermolysis of both cyclic compound 2 and cyclic compound 13 is accompanied by the Dimroth rearrangement to yield 3,6,10-triphenyl-tris[1,2,4]triazolo[1,5-a:1′, 5′-c:4″,3″-e][1,3,5]triazine (14). Compounds 13 and 14 are the first representatives of cyclic compounds with this skeleton. 13C NMR spectroscopy allows the determination of the isomer type in a series of tris[1,2,4]triazolo[1,3,5]triazines.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 706–712, March, 2005.  相似文献   

12.
Oxidation of quadruply bonded metal-metal dimers in the presence of good π-accepting ligands results in the formation of MoV---MoV compounds of the type [MO2(μ-X)2(Y)(Y′)]2+ (X = O or S; Y,Y′ = O,O; S,S; O,S). Reaction of MO2(O2CCH3)4 with oxygen in the presence of Na2mnt (mnt = 1,2-dicyanoethylene-2,2-dithiolate) gives [MO2(μ-S)2(O)(S)(mnt)2]2− (1). The compound crystallizes in the monoclinic space group P21/c, with cell dimensions a = 19.547(4), b = 15.210(4), c = 18.754(6) Å, β = 101.69(2)°, V= 5460(2) Å3, and Z = 4. Similarly, oxidation of o-dichlorobenzene solutions of Mo2Cl4(CH3CN)4 and 4,4′-dimethyl-2,2′-dipyridyl (dmpby) or, more directly, the reaction of Mo2Cl4(dmbpy)2 with oxygen leads to the formation of a red solid, which was characterized by X-ray crystallography to be Mo2(μ-O)2(O)2(Cl)2(dmbpy)2 (2). Red diamond crystals, prepared by slow evaporation of CH3CN solutions of 2, are trigonal and in the space group P3121 with cell dimensions a = 16.135(4), b = 16.135(4), c = 10.709(3) Å, V = 2414.4(13) Å3 and Z = 3. In both structures, the geometry about each of the molybdenum atoms is a distorted square pyramid with terminal oxygen or sulphur atoms at the apices and in a syn conformation. The molybdenum-molybdenum bond distances of 2.858(1) Å and 2.562(2) Å in structures of 1 and 2, respectively, are typical of other MoV---MoV dimers and indicative of a single Mo---Mo bond.  相似文献   

13.
Five polybrominated oxydiphenol derivatives have been isolated from various Great Barrier Reef collections and one Fijian collection of the sponge Dysidea herbacea: 3,4',5,6,6'-hexabromo-2, 2'-oxydiphenol (11), 3,4',5,6,6'-pentabromo-2,2'-oxydiphenol (12), 3.4',5,6,6'-pentabromo-2,2'-oxydiphenol 1-methyl ether (13), 3,4,4',5,6'-pentabromo-2,2'-oxydiphenol 1,1'-dimethyl ether (14) and 3,4',5,6'-tetrabromo-2,2'-oxydiphenol 1'-methyl ether (15).The structure of the first member of this series is determined by a new method involving 13C spin-lattice relaxation data. The contributions of nearby hydrogens to quaternary carbon spin-lattice relaxation times are calculated for various possible structures and compared with the experimental data, leading to an unequivocal proof of structure. The structures of the remaining compounds in the series are established principally by analysis of 13C chemical shifts and 13C-1H coupling constants.  相似文献   

14.
Analytical applications of a new solid reagent tris(2,2′-dipyridyl)iron(II) tetraphenylborate are described. The solid reagent selectively reacts with Ag(I), Tl(I), and Hg(II) cations to release the colored tris(2,2′-bipyridyl)iron(II) cation in solution, which is determined spectrophotometrically. The experimental data show that the Ag(I), Tl(I), and Hg(II) cations respond linearly in 5 to 50-ppm range.  相似文献   

15.
Reaction of the Schiff base ligand derived from 4-pyridinecarboxaldehyde NC5H4C(H)N[2′,4′,6′-(CH3)C6H2], (1), with palladium(II) acetate in toluene at 60 °C for 24 h gave [Pd{NC5H4C(H)N[2′,4′,6′-(CH3)C6H2]}2(OCOCH3)2], (2), with two ligands coordinated through the pyridine nitrogen. Treatment of the Schiff base ligand derived from 4-pyridinecarboxaldehyde N-oxide, 4-(O)NC5H4C(H)N[2′,4′,6′-(CH3)C6H2], (4), with palladium(II) acetate in toluene at 75 °C gave the dinuclear acetato-bridged complex [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(OCOCH3)]2, (5) with metallation of an aromatic phenyl carbon. Reaction of complex 5 with sodium chloride or lithium bromide gave the dinuclear halogen-bridged complexes [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(Cl)]2, (6) and [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(Br)]2, (7), after the metathesis reaction. Reaction of 6 and 7 with triphenylphosphine gave the mononuclear species [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(Cl)(PPh3)], (8) and [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}-(Br)(PPh3)], (9), as air stable solids. Treatment of 6 and 7 with Ph2P(CH2)2PPh2 (dppe) in a complex/diphosphine 1:2 molar ratio gave the mononuclear complexes [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(PPh2(CH2)2PPh2)][Cl], (10), and [Pd{4-(O)NC5H3C(H)N[2′,4′,6′-(CH3)C6H2]}(PPh2(CH2)2PPh2)][PF6], (11), with a chelating diphosphine. The molecular structure of complex 9 was determined by X-ray single crystal diffraction analysis.  相似文献   

16.
A new, mild and friendly method for the synthesis of (N → B) phenyl[N-alkyliminodiacetate-O,O′,N]boranes 27 is reported. All compounds were identified by 1H, 11B, 13C NMR and their high resolution mass spectra (HRMS) are reported. The structure of the compounds 2, 4 and 5 were established by single crystal X-ray. Compounds 2 and 4 crystallized with two independent molecules 2A, 2B and 4A, 4B, respectively in the asymmetric unit. These molecular structures established the bicyclic structure showing a N → B bond length of 1.666 (2) Å for 2A, 1.675 (2) Å for 2B, 1.675 (3) Å for 4A, 1.663 (3) Å for 4B and 1.679 (2) Å for 5, as well as different torsion angles of the junction, 28.70 (2)° (C11–B1–N6–C17) for 2A, 21.50 (2)° (C11a–B1a–N6a–C17a) for 2B, 25.76 (0.26)° (C11–B1–N6–C17) for 4A, 21.96 (0.28)° (C11a–B1a–N6a–C17a) for 4B and −29.22 (0.20)° (C5–N1–B1–C13) for 5.  相似文献   

17.
Yanhong Zhou  Li Guan  Hong Zhang   《Polyhedron》2009,28(13):2667-2672
Four new coordination polymers of cobalt(II) and nickel(II) with functionalized dicarboxylate ligands, namely, [CoIIL1(2,2′-bpy)(H2O)] (1), [NiIIL1(2,2′-bpy)(H2O)]·H2O (2), [CoII2(L2)2(2,2′-bpy)2(H2O)] (3) and [NiII2(L2)2(2,2′-bpy)2(H2O)] (4), where H2L1 = 2,5-dibenzoylterephthalic acid, H2L2 = 4,6-bis(4-methylbenzoyl)isophthalic acid and 2,2′-bpy = 2,2′-bipyridine, were synthesized and characterized by elemental analysis, IR spectra and thermogravimetric analysis. Complex 1 exhibits a zigzag chain with a C–Hπ interaction between the phenyl ring proton and the phenyl ring of an adjacent chains to form a 2D supramolecular sheet. Complex 2 contains two helical chains which extend into 2D via a C–Hπ interaction between the pyridine ring proton and the pyridine ring. Complexes 3 and 4 are isomorphous with helical chains that extend in the same direction and further link to one another by supramolecular forces into a 2D structure. Moreover, magnetic and luminescence properties have been investigated for 1 and 2, respectively.  相似文献   

18.
Two novel organic–inorganic hybrid polyoxometalates, (X = P, m = 1 1; X = Si, m = 2 2; 2,2′-bpy = 2,2′-bpyridine), have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. They are isostructural, possessing orthorhombic, and the parameters of unit cells for compound 1 are space group Pbca, a = 17.317(4) Å, b = 17.092(3) Å, c = 20.587(4) Å, V = 6445(2) Å3, Z = 4; for compound 2 are space group Pcab, a = 17.181(3) Å, b = 18.198(4) Å, c = 20.672(4) Å, V = 6463(2) Å3, Z = 4. The two compounds show a layer framework constructed from Keggin-polyoxoanion clusters and [Cu (2, 2′-bpy)2]2+ coordination polymer fragments via weak covalent interactions, resulting in a 3D network via supramolecular interactions. Their electrochemical properties are studied in detail.  相似文献   

19.
The reaction of tris(2-hydroxyphenyl)amine with Ge(OEt)4 produced 1,1′-oxybis(1-germa-5-aza-2,8,9-trioxatribenzobicyclo[3.3.3]undeca-3,6,10-triene) (11). This reaction proceeded via 1-ethoxy-1-germa-5-aza-2,8,9-trioxatribenzobicyclo[3.3.3]undeca-3,6,10-triene (10a). In oxo-bridged germatrane dimer 11, the Ge---O---Ge moiety is bent at an angle of 131.2(4)°, and Ge---Obridge distances are 1.750(7) and 1.743(6) Å. The other Ge---O distances, by comparison, averaged 1.785(7) Å. The germanium centers in 11 are nearly trigonal bipyramidal by virtue of significant interaction with transannular nitrogen: the Ge---N distances are 2.235(8) and 2.247(7) Å. Ab initio calculations on 11 and H3Ge---O---GeH3 predict a linear Ge---O---Ge geometry when d-orbitals are omitted from the basis set, but correctly predict a bent geometry when d-orbitals are used.  相似文献   

20.
Eight S-glycosylated 5,10,15,20-tetrakis(tetrafluorophenyl)porphyrins (1a′, 1b′, 1a and 1b (a: S-glucosylated, b: S-galactosylated)) and their 1,3-dipolar cycloadducts, i.e. chlorins 2a′, 2b′, 2a and 2b were prepared by nucleophilic substitution of the pentafluorophenyl groups with S-glycoside. These photosensitizers were characterized by 1H, 13C and 19F NMR spectroscopies and elemental analysis. The photocytotoxicity of the S-glycosylated photosensitizers and the parent porphyrin (1) and chlorin (2) was examined in HeLa cells. Photosensitizers 1, 2, 1a′, 1b′, 2a′ and 2b′ showed no significant photocytotoxicity at the concentration of 0.5 μM, while the deprotected photosensitizers 1a, 1b, 2a and 2b were photocytotoxic. The strong inhibition by sodium azide of the photocytotoxicity of these photosensitizers suggested that 1O2 is the main mediator. The S-glucosylated photosensitizers 1a and 2a showed higher photocytotoxicity than S-galactosylated 1b and 2b, respectively. The cellular uptake of 1a and 2a increased up to 24 h, while that of 1b and 2b was saturated by 12 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号