首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dissipative particle dynamics (DPD) simulations are performed to study the factors that lead to the transition between micelle and vesicle in catanionic mixtures composed of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB), with the aim of understanding and controlling the structures of this system. The phase behavior, kinetics of vesicle formation, and micelle–vesicle transitions induced by salt, temperature, and selective solvents are investigated systematically. In this research, phase diagram of SDS/DTAB mixture is constructed by simulations at different concentrations and composition fractions. It is consistent with experimental results. The kinetic process of catanionic vesicle formation is illustrated. It is clarified that the transition between micelle and vesicle can be controlled by properly adjusting the external conditions. More interestingly, the evolution condition and transition mechanism between micelle and vesicle induced by various conditions are revealed. The membrane thickness differences between vesicles formed at different external conditions are compared. Here, the predicted phenomenon is compared with experimental results whenever possible, and we try to make a connection between the simulation model and the reality of the experiments. These studies help to shed light on the microscopic details of micelle–vesicle transition in catanionic mixtures.  相似文献   

2.
The concentration vs composition diagram of aggregate formation of the dodecyltrimethylammonium bromide (DTAB) and didodecyldimethylammonium bromide (DDAB) mixture in aqueous solution at rather dilute region was constructed by analyzing the surface tension, turbidity, and electrical conductivity data and inspected by cryo-TEM images and dynamic light scattering data. Although the aqueous solution of DTAB forms only micelles, the transition from monomer to small aggregates and then to vesicle was found at 0.1 < X2 相似文献   

3.
Self-healable polyacrylamide-based hydrogels were prepared at room temperature via a one-step emulsion copolymerization of acrylamide(AM),dodecyl 2-methacryIate(DM),and 5-acetylaminopentyl acrylate(AAPA) using sodium dodecyl sulfonate(SDS) as the emulsifier and ammonium persulfate(APS)as the initiator.The produced linear multi-block copolymer chains are composed of randomly-linked hydrophilic polyacrylamide segments(PAM) and hydrophobic segments constituted by DM and AAPA units(P(DM-co-AAPA)).The P(DM-co-AAPA) segments will self-aggregate into hydrophobic microdomains during the polymerization process driven by the hydrophobic interactions,and finally separate from water phase,acting as the crosslinks and leading to the formation of strong hydrogels with a storage modulus as high as 400 Pa.These hydrophobic microdomains will be dissolved in water when the temperature increases to 70℃,resulting in a temperature-responsive reversible sol-gel transition of the prepared hydrogels.Furthermore,the prepared hydrogels have excellent self-healing ability.The broken hydrogels can be automatically healed into a body with a same strength within 2-min's contact.This work provides a new simple way to prepare reversible physical crosslinked hydrogel with high strength and self-healing efficiency.  相似文献   

4.
基于氢键型自修复水凝胶的结构特征构建了其横截面的格气模型, 并利用Monte Carlo模拟方法对其自修复行为进行研究. 首先根据自修复过程中的比热峰值确定了氢键的临界联结分数, 然后重点考察了氢键强度、 合作效应以及平均断面间距对其自修复行为的影响. 在此基础上, 进一步研究了氢键型凝胶的动态修复过程, 讨论了相关因素对自修复时间等动态性质的影响. 结果表明, 氢键型凝胶的自修复在本质上归属于一级热力学相变, 且氢键强度是自修复过程中的最关键因素. 同时, 初始断面间距和格子间的合作效应也可显著影响凝胶的自修复行为.  相似文献   

5.
The aqueous self-assembly of a novel lysine-derived surfactant with a gemini-like architecture, designated here as 12-Lys-12, has been experimentally investigated for the amphiphile alone in water and in a mixture with dodecyltrimethylammonium bromide (DTAB). The neat surfactant forms interesting micrometer-sized rigid tubules in the dilute region, resulting in very viscous solutions. For the catanionic mixture with DTAB, various single and multiphase regions were identified (up to a total surfactant concentration of 1.5 wt %) by means of combined polarizing light microscopy, cryo-TEM, and NMR. In the DTAB-rich side, for a mixing molar ratio in the range 2 < DTAB/12-Lys-12 < 4, a region of stable, unilamellar vesicles can be found. Furthermore, it was found that upon addition of 12-Lys-12 to pure DTAB solutions, the mixed micelles grow and beyond a given mixing ratio, vesicles assemble and coexist with small micelles. The transition is not continuous, since there is a narrow mixing range where phase separation occurs. Self-diffusion measurements and cryo-TEM imaging show that the average vesicle radius is on the order of 30-40 nm.  相似文献   

6.
Hydrogels, with self-healing properties that can self-repair spontaneously when subjected to mechanical stress, are gaining popularity in the biomedical field. Numerous attempts have been made to create distinctive hydrogels with self-healing properties, along with stimuli-responsiveness and biocompatibility. Several techniques exist for fabricating hydrogels, including physical and chemical crosslinking via the creation of covalent bonds, and so on. Here, we prepared self-healing, stimuli-responsive, mineralized hydrogel by simply dissolving Kollidon 90-F, sodium chloride (NaCl), and potassium carbonate (K2CO3) in an aqueous solution. The dissociated CO32− replaces the water molecules from the Kollidon 90-F polymer backbone and facilitates the cross-linking of the polymer chain, resulting in hydrogel formation. In addition, the in-situ produced sodium carbonate (Na2CO3) strengthens the hydrogel network. We optimized the mineralized hydrogels by taking various metal salts and different concentrations of K2CO3. The optimized hydrogel showed good stability over a period of time, was able to maintain viscoelastic properties, possessed good self-healing ability, and showed a shape retention ability. The shear-thinning property demonstrated by the optimized hydrogel could open a ray of hope in the bioprinting or 3D printing industry. Further, the stretch-responsive release of dye from the Self-healing mineralized hydrogel (SHMH) matrix confirms the mechanoresponsive behavior of the hydrogel. Overall, the findings could be utilized in the future to fabricate a stable drug delivery system that can autonomously release the drug molecules when stretched by daily processes such as joint movements.  相似文献   

7.
A series of thermosensitive hydrogels were prepared from N-[3-(dimethylamino)propyl]methacrylamide (DMAPMA) monomer by using 11.6–17.8% (m/m) N,N-methylenebis(acrylamide) (MBAAm) as the crosslinker and comonomer in water. A kinetic study of the absorption determined the transport mechanism. The diffusion coefficients of these hydrogels were calculated for the Fickian mechanism. It was shown that the swelling behavior of the P(DMAPMA-co-MBAAm) hydrogels can be controlled by changing the amount of MBAAm. The swelling equilibrium of the P(DMAPMA-co-MBAAm) hydrogels was also investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). In pure water, irrespective of the amount of MBAAm, the P(DMAPMA-co-MBAAm) hydrogels showed a discontinuous phase transition between 30 and 40 °C. However, the transition changed from discontinuous to continuous with the addition of surfactants, this is ascribed to the conversion of non-ionic P(DMAPMA-co-MBAAm) hydrogel into polyelectrolyte hydrogels due to binding of surfactants through the hydrophobic interaction. Additionally, the amount of free SDS and DTAB ions was measured at different temperatures by a conductometric method, it was found that the electric conductivity of the P(DMAPMA-co-MBAAm) – surfactant systems depended strongly on both the type and concentration of surfactant solutions.  相似文献   

8.
Thermosensitive hydrogels were prepared by free-radical polymerization in aqueous solution from N-isopropylacrylamide (NIPA) and acrylamide (AAm) monomers. N,N-Methylenebis(acrylamide) (MBAAm) was used as a crosslinker. A kinetic study of the absorption determined the transport mechanism. The diffusion coefficients of these hydrogels were calculated for the Fickian mechanism. It was shown that the swelling behavior of the P(NIPA-co-AAm) hydrogels can be controlled by changing the amount of MBAAm. The swelling equilibrium of the P(NIPA-co-AAm) hydrogels was also investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). In SDS and DTAB solutions, the equilibrium swelling ratio of the hydrogels increased, this is ascribed to the conversion of non-ionic P(NIPA-co-AAm) hydrogel into polyelectrolyte hydrogels due to binding of surfactant molecules through the hydrophobic interaction. Additionally, the amount of free SDS and DTAB ions was measured at different temperatures by a conductometric method, it was found that the electric conductivity of the P(NIPA-co-AAm)—surfactant systems depended strongly on both the type and concentration of surfactant solutions.  相似文献   

9.
Injectable hydrogels have been considered as promising materials for bone regeneration,but their osteoinduction and mechanical performance are yet to be improved.In this study,a novel biocompatible injectable and self-healing nano hybrid hydrogel was on-demand prepared via a fast(within 30 s) and easy gelation approach by reversible Schiff base formed between-CH=O of oxidized sodium alginate(OSA) and-NH_2 of glycol chitosan(GCS) mixed with calcium phosphate nanoparticles(CaP NPs).Its raw materials can be ready in large quantities by a simple synthesis process.The mechanical strength,degradation and swelling behavior of the hydrogel can be readily controlled by simply controlling the molar ratio of-CH=O and-NH_2.This hydrogel exhibits pH responsiveness,good degradability and biocompatibility.The hydrogel used as the matrix for mesenchymal stem cells can significantly induce the proliferation,differentiation and osteoinduction in vitro.These results showed this novel hydrogel is an ideal candidate for applications in bone tissue regeneration and drug delivery.  相似文献   

10.
A chitosan-based biocompatible self-healing hydrogel has been facilely prepared and used for bioapplications.  相似文献   

11.
Wetting of water by hexadecane has been investigated by ellipsometry as a function of the concentration of the cationic surfactant dodecyltrimethylammonium bromide (DTAB) in the aqueous phase and temperature. Three phases are identified: a 2-D gas of hexadecane molecules and DTAB molecules, a 2-D liquid comprising a mixed monolayer of hexadecane and DTAB, and a 2-D 'solid' phase. Evidence is presented to support the hypothesis that the liquid-solid phase transition is actually a wetting transition in which a surface-frozen layer of pure hexadecane wets the liquid-like mixed monolayer of hexadecane and DTAB. The triple point, at which the three phases coexist, is located at a temperature of 17.3 degrees C and DTAB concentration of 0.75 mmol kg (-1). The slopes of the three phase boundaries are analyzed thermodynamically.  相似文献   

12.
 Microcrystals of the metal silicate hydrate ilerite orient macroscopically on the surface of a ATR-crystals and thus, are accessible for infrared linear dichroism measurements. We present first results which indicate that the alkyl chain packing and the orientation of the polar group of dodecyltrimethylammoniumbromide (DTAB) intercalated between silicate layers can be determined in terms of infrared order parameters. The properties of DTAB can be modulated by the relative humidity of the surrounding atmosphere and by temperature. Upon heating DTAB undergoes a phase transition from a paraffin-like solid to a fluid phase. The former is characterized by the orthorhombic perpendicular packing of the frozen alkyl chains with tilted long axes. The interactions between the ionic groups of the surfactant and that of the host matrix stabilize the lamellar arrangement of DTAB in the crystalline and in the fluid phases. Received: 14 January 1998 Accepted: 27 July 1998  相似文献   

13.
Unilamellar vesicles are observed to form in aqueous solutions of the cationic surfactant, cetyl trimethylammonium bromide (CTAB), when 5-methyl salicylic acid (5mS) is added at slightly larger than equimolar concentrations. When these vesicles are heated above a critical temperature, they transform into long, flexible wormlike micelles. In this process, the solutions switch from low-viscosity, Newtonian fluids to viscoelastic, shear-thinning fluids having much larger zero-shear viscosities (e.g., 1000-fold higher). The onset temperature for this transition increases with the concentration of 5mS at a fixed CTAB content. Small-angle neutron scattering (SANS) measurements show that the phase transition from vesicles to micelles is a continuous one, with the vesicles and micelles coexisting over a narrow range of temperatures. The tunable vesicle-to-micelle transition and the concomitant viscosity increase upon heating may have utility in a range of areas, including microfluidics, controlled release, and tertiary oil recovery.  相似文献   

14.
We have prepared polyion complex (PIC) hydrogel consisting of poly(3-(methacryloylami no) propyl-trimethylamonium chloride) and poly(sodium p-styrenesulfonate) polyelectrolytes via a two-step polymerization procedure and have investigated specific ion effects on the selfhealing of the PIC hydrogel. Our study demonstrates that the mechanical properties of the PIC hydrogel are strongly dependent on the type of the ions doped in the hydrogel. The ion-specific effects can be used to modulate the self-healing efficiency of the PIC hydrogel. As the doped anions change from kosmotrops to chaotropes, the self-healing efficiency of the PIC hydrogel increases. A more chaotropic anion has a stronger ability to break the ionic bonds formed within the hydrogel, leading to a higher efficiency during the healing.  相似文献   

15.
刘冬生 《高分子科学》2017,35(10):1307-1314
In recent years,DNA supramolecular hydrogels have attracted much attention due to their injectability,biocompatibility,responsiveness and self-healing properties.In this work,we designed a linear DNA brick containing one duplex with two cytosine (C)-rich sequence on both ends.This brick can first assemble to form duplex under pH 8 condition.After adjusting the pH to 5,the C-rich sequence tends to form intermolecular i-motif structure,which joins the linear DNA molecules together to form interlocked cyclic structures and yield the DNA hydrogel.By adjusting the length and bending curvature of the duplex part of the molecule,one can change the basic unit of the hydrogel structure to tune the properties of the DNA hydrogel.  相似文献   

16.
Biology employs vesicles to package molecules (e.g., neurotransmitters) for their targeted delivery in response to specific spatiotemporal stimuli. Biology is also capable of employing localized stimuli to exert an additional control on vesicle trafficking; intact vesicles can be restrained (or mobilized) by association with (or release from) a cytoskeletal scaffold. We mimic these capabilities by tethering vesicles to a biopolymer scaffold that can undergo (i) stimuli-responsive network formation (for vesicle restraint) and (ii) enzyme-catalyzed network cleavage (for vesicle mobilization). Specifically, we use the aminopolysaccharide chitosan as our scaffold and graft a small number of hydrophobic moieties onto its backbone. These grafted hydrophobes can insert into the bilayer to tether vesicles to the scaffold. Under acidic conditions, the vesicles are not restrained by the hydrophobically modified chitosan (hm-chitosan) because this scaffold is soluble. Increasing the pH to neutral or basic conditions allows chitosan to form interpolymer associations that yield a strong, insoluble restraining network. Enzymatic hydrolysis of this scaffold by chitosanase cleaves the network and mobilizes intact vesicles. Potentially, this approach will provide a controllable means to store and liberate vesicle-based reagents/therapeutics for microfluidic/medical applications.  相似文献   

17.
The hydrogel consisting of an oligomeric electrolyte, poly[pyridinium-1,4-diyl-iminocarbonyl-1,4-phenylenemethylene chloride] ( 1-Cl) underwent self-healing at temperatures lower than its gelation temperature after destruction of the gel network in a shear flow. The self-healing mechanism was investigated by rheological measurements on three different kinds of gels including a low-molecular weight organogelator and a polymeric hydrogelator. Although all of the three gels exhibited thermo-reversible hysteresis loops in the shear moduli, only 1-Cl hydrogel recovered its mechanical properties after vigorous agitation. It is conjectured that the self-healing is due to formation of network structure via a chlorine ion mediated hydrogen bond for which the activation energy is on the order of 10 kJ/mol.  相似文献   

18.
In this paper, it is reported that positively charged Mg3Al layered double hydroxide (LDH) nanoparticles can induce the spontaneous formation of vesicles in micelle solution of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) with a mass ratio of 8:2. The formation of vesicles was demonstrated by negative-staining transmission electron microscopy observations. The size of the vesicles increased with the increase in the concentration of Mg3Al-LDH nanoparticles. A composite of LDH nanoparticles encapsulated in vesicles was formed. A possible mechanism of LDH-induced vesicle formation was suggested. The positively charged LDH surface attracts negatively charged micelles or free amphiphilic molecules, which facilitates their aggregation into bilayer patches. These bilayer patches connect to each other and finally close to form vesicles. It was also found that an adsorbed compound layer of SDS and DTAB micelles or molecules on the LDHs surface played a key role in vesicle formation.  相似文献   

19.
Self-healing hydrogels have attracted growing attention over the past decade due to their biomimetic structure, biocompatibility, as well as enhanced lifespan and reliability, thereby have been widely used in various biomedical, electrical and environmental engineering applications. This feature article has reviewed our recent progress in self-healing hydrogels derived from mussel-inspired interactions, multiple hydrogen-bonding functional groups such as 2-ureido-4[1 H]-pyrimidinone(UPy), dynamic covalent bonds(e.g., Schiff base reactions and boronic ester bonds). The underlying molecular basics of these interactions, hydrogel preparation principles, and corresponding performances and applications are introduced. The underlying reversible intermolecular interaction mechanisms in these hydrogels were investigated using nanomechanical techniques such as surface forces apparatus(SFA) and atomic force microscopy(AFM), providing fundamental insights into the self-healing mechanisms of the hydrogels. The remaining challenging issues and perspectives in this rapidly developing research area are also discussed.  相似文献   

20.
We have shown solvent- and substrate-dependent chiral inversion of a few glycoconjugate supramolecules. (Z)-F-Gluco, in which d -glucosamine has been attached chemically to Cbz-protected l -phenylalanine at the C terminus, forms a self-healing hydrogel through intertwining of the nanofibers wherein the gelators undergo lamellar packing in the β-sheet secondary structures with a single chiral handedness. Dihybrid (Z)-F-gluco nanocomposite gel was prepared by in-situ formation of silver nanoparticles AgNPs in the gel; this enhances the mechanical properties of the composite gel through physical crosslinking without altering the packing pattern. In contrast, (Z)-L-gluco bearing an l -leucine moiety does not form a hydrogel but an organogel. Interestingly, the chiral handedness of the aggregates of (Z)-L-gluco can be reversed by choosing suitable solvents. In addition to self-healing behavior, (Z)-L-gluco gel revealed shape persistency. Further, (Z)-F-gluco hydrogel is benign, nontoxic, non-immunogenic, and non-allergenic in animal cells. AgNP-loaded (Z)-F-gluco hydrogel showed antibacterial activity against both Gram-positive and Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号