首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
Characterization, thermal stability, and thermal decomposition of alkaline earth metal mandelates, M(C6H5CH(OH)CO2)2, (M = Mg(II), Ca(II), Sr(II), and Ba(II)), were investigated employing simultaneous thermogravimetry and differential thermal analysis or differential scanning calorimetry, (TG–DTA or TG–DSC), infrared spectroscopy (FTIR), complexometry, and TG–DSC coupled to FTIR. All the compounds were obtained in the anhydrous state and the thermal decomposition occurs in three steps. The final residue up to 585 °C (Mg), 720 °C (Ca), and 945 °C (Sr) is the respective oxide MgO, CaO, and SrO. For the barium compound the final residue up to 580 °C is BaCO3, which is stable until 950 °C and above this temperature the TG curve shows the beginning of the thermal decomposition of the barium carbonate. The results also provide information concerning the thermal behavior and identification of gaseous products evolved during the thermal decomposition of these compounds.  相似文献   

2.
Thermogravimetry (TG), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were used to study the thermal behaviour of the organic matter in the natural phosphate and its concentrate kerogen from the Moroccan deposit. The TG analysis showed that both the investigated samples exhibited a one-step thermal oxidation in the main mass loss area, between 160 and 540°C, attributed to the hydrocarbon material. When DSC analyses of oxidation as well as pyrolysis yielded two evolutionary stages of the hydrocarbon in this temperature range : the first one at 160-360°C and the second one above 360°C. Pyrolytic kerogen decomposition was monitored by measuring changes in the principal FTIR organic bands. The results showed, in the first stage, the progressive decrease of signals due to CH2 and CH3 vibrations as well as the carbonyl and carboxylic bands, and their subsequent disappearance at 300°C. In the second stage above 400°C, the signal due to the aromatic components (1600 cm-1) appeared but decreased with increasing temperature up to 540°C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Oxygen (O2) or air is widely used to produce cumene hydroperoxide (CHP) in the cumene oxidation tower. The aim of this study was applied to analyze thermal hazard of two by-products including alpha-methylstyrene (AMS) and acetophenone (AP) in a CHP oxidation tower. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were operated to evaluate thermal runaway reaction of CHP mixed with AMS and AP. Exothermic onset temperature (T 0), maximum temperature (T max), activation energy (E a), etc., that were employed to prevent and protect thermal runaway reaction and explosion in the manufacturing process and storage area. In view of proactive loss prevention, the inherently safer handling procedure and storage situation should be maintained in the chemical industries. The T 0 of 30 mass% CHP was determined to be 105 °C by DSC. Therefore, the T 0 of 30 mass% CHP mixed with AMS was determined to be 60–70 °C by DSC. The exothermic reaction of CHP/AP and CHP/AMS by DSC under N2 reaction gas is thermal decomposition of oxygen–oxygen bond (–O–O–) because of the anaerobic reaction.  相似文献   

4.
The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.  相似文献   

5.
The synthesis, thermal behavior, and characterization of the decomposition products of linear geranyl diesters: digeranyl succinate, digeranyl glutarate, digeranyl adipinate, and digeranyl sebacinate were presented. The linear geranyl diesters were prepared in direct esterification process of a molar stoichiometric ratio of geraniol and suitable acidic reagent in solvent-free medium at 130 °C using butylstannoic acid as a catalyst. Their structure was confirmed based on FTIR, 1H- and 13C-NMR spectra. It was proved that the use of tin catalyst allowed decreasing the reaction time and increasing the final conversion of substrates when compared to non-catalyzed process. It considerably simplifies the processing by reduction of the preparation cost and thus this new method of synthesis of aroma diesters may be attractive for practical applications. The thermal behavior of prepared compounds was studied by TG/DSC/FTIR coupled method. TG analysis showed that diesters are thermally stable up to temperatures above 200 °C. The DTG curves confirmed that these decomposition run as a single-stage process. The T max1 were in the range of 294.5–313.8 °C depending on the aliphatic chain length (–CH2–)n in the structure of aroma diesters, which was in accordance with DSC data. The analysis of the gases evolved during heating of diesters in inert atmosphere indicated on the asymmetrical disrupt of their bonds. The cleavage of ester bond and O-geranyl bond was expected. It resulted in production of the mixture of derivatives of geraniol (acyclic and alicyclic monoterpene hydrocarbons) like myrcene, ocimene, or limonene as main decomposition products. In addition, the formation of anhydride, lactone, or ketone functionalities among the degradation products clearly confirmed the proposed degradation path of studied diesters.  相似文献   

6.
Acetone, hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) are easily to produce triacetone triperoxide (TATP), which is an organic peroxide and a hazardous material. The aim of this study was to analyze the thermal hazard of various fire-extinguishing reagents mixed with TATP. Various functions of fire-extinguishing reagents may have different extent of reactions with TATP. Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TG) were used to detect the thermal hazard and to evaluate the effect of fire-extinguishing reagents mixed with TATP under fire condition. TATP decomposed rapidly and final decomposition was calculated before 200 °C. Therefore, heat of decomposition (ΔH d) of TATP was evaluated to be 2,500 J g?1 by DSC under 2 °C min?1 of heating rate. H2O2, acetone, and H2SO4 should not be mixed in a wastewater drum. TATP decomposed at 50 °C by DSC using O2 of reaction gas that is an exothermic reaction and can decompose a large amount of heat. Therefore, TATP was applied to assess thermal pyrolysis by DSC employing N2 of reaction gas that can analyze an endothermic reaction. Mass loss percentage of TATP was evaluated to be 100 % when the ambient temperature exceeds 110 °C by TG using O2 or N2 of reaction gas.  相似文献   

7.
Polystyrene template microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. These template particles dispersed in aqueous solution have been used for the entrapment of ferrocene by a swelling process of methylene chloride emulsion droplets containing ferrocene within these particles, followed by evaporation of methylene chloride. The effects of CH2Cl2 volume and the [CH2Cl2]/[FeC10H10] (w/w) ratio on the size and size distribution of the swollen template particles were elucidated. Air-stable Fe3C nanoparticles embedded in amorphous carbon matrix (Fe3C/C) have been prepared by thermal decomposition of the ferrocene-swollen template polystyrene particles at 500 °C for 2 h in a sealed cell. Decomposition of these swollen template particles for 2 h at higher temperatures led to the formation of carbon nanotubes (CNTs) in addition to the Fe3C/C composite nanoparticles. The yield of the CNTs increased as the annealing temperature was raised. An opposite behavior was observed for the diameter of the formed CNTs. The size and size distribution, crystallinity, and magnetic properties of the different Fe3C/C composite nanoparticles have also been controlled by the annealing temperature.  相似文献   

8.
The products evolved during the thermal decomposition of kaolinite–urea intercalation complex were studied by using TG–FTIR–MS technique. The main gases and volatile products released during the thermal decomposition of kaolinite–urea intercalation complex are ammonia (NH3), water (H2O), cyanic acid (HNCO), carbon dioxide (CO2), nitric acid (HNO3), and biuret ((H2NCO)2NH). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved products CO2, H2O, NH3, HNCO are mainly released at the temperature between 200 and 450 °C with a maximum at 355 °C; (2) up to 600 °C, the main evolved products are H2O and CO2 with a maximum at 575 °C. It is concluded that the thermal decomposition of the kaolinite–urea intercalation complex includes two stages: (a) thermal decomposition of urea in the intercalation complex takes place in four steps up to 450 °C; (b) the dehydroxylation of kaolinite and thermal decomposition of residual urea occurs between 500 and 600 °C with a maximum at 575 °C. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanation have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials and its intercalation complexes.  相似文献   

9.
Thermogravimetry, differential thermal analysis, X-ray diffractometry and infrared spectroscopy showed that Ni(CH3COO)2·4H2O decomposes completely at 500°C, giving rise to a mixture of Nio and NiO. The results revealed that the compound undergoes dehydration at 160°C and melts at 310°C. The water thus released hydrolyses surface acetate groups, acetic acid being evolved into the gas phase. At 330°C, the anhydrous acetate is converted into NiCO3, releasing CH3COCH3 into the gas phase. The carbonate subsequently decomposes (at 365°C) to give NiO(s), CO2(g) and CO(g). On further heating up to 373°C, a mixture of Nio and NiO is formed. Other gas-phase products were detected at 400°C, viz. CH4 and (CH3)2CH=CH2, which were formed in surface reactions involving initial gas-phase products. Non-isothermal kinetic parameters (A and ΔE) were calculated on the basis of temperature shifts experienced in the various decomposition processes as a function of heating rate (2–20 deg·min?1).  相似文献   

10.
Understanding the response of drugs and their formulations to thermal stresses is an integral part of the development of stable medicinal products. In the present study, the thermal degradation of two drug samples (cetirizine and simvastatin) was determined by differential scanning calorimetery (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the cetirizine occurs during two temperature ranges of 165–227 and 247–402 °C. The TG/DTA analysis of simvastatin indicates that this drug melts (at about 143 °C) before it decomposes. The main thermal degradation for the simvastatin occurs during two endothermic behaviors in the temperature ranges of 238–308 and 308–414 °C. The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of both the drug samples was verified. The results showed that as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by ASTM E696 method, the values of activation energy for cetirizine and simvastatin were 120.8 and 170.9 kJ mol?1, respectively. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   

11.
Thermal instability is a loss of thermal control which liberates high amount of energy and pressure. An incident took place during drying of an intermediate having amino alcohol functional group in agitated nutsche filter dryer at plant scale. During our investigation using advanced reactive system screening tool (ARSST), thermal decomposition was observed. Onset temperature of decomposition (T o) is at 85 °C, adiabatic temperature rise due to decomposition (ΔT ad) is 215 °C, maximum temperature attained due to decomposition (T max) is 300 °C, maximum self-heat rate (dT/dt)max is 6,215 °C min?1, and maximum rate of pressure rise (dP/dt)max is 1,442 psi min?1 obtained from ARSST experiments. T D24 value is 75 °C which was estimated experimentally. The correlations of these results were utilized to identify the root cause of this incident and necessary control measures were taken accordingly.  相似文献   

12.
The melting temperature, melting enthalpy, and specific heat capacities (C p) of 5′-deoxy-5′-iodo-2′,3′-O-isopropylidene-5-fluorouridine (DIOIPF) were measured using DSC-60 Differential Scanning Calorimetry. The melting temperature and melting enthalpy were obtained to be 453.80 K and 33.22 J g?1, respectively. The relationship between the specific heat capacity and temperature was obtained to be C p/J g?1 K?1 = 2.0261 – 0.0096T + 2 × 10?5 T 2 at the temperature range from 320.15 to 430.15 K. The thermal decomposition process was studied by the TG–DTA analyzer. The results showed that the thermal decomposition temperature of DIOIPF was above 487.84 K, and the decomposition process can be divided into three stages: the first stage is the decomposition of impurities, the mass loss in the second stage may be the sublimation of iodine and thermal decomposition process of the side-group C4H2O2N2F, and the third stage may be the thermal decomposition process of both the groups –CH3 and –CH2OCH2–. The obtained thermodynamic basic data are helpful for exploiting new synthetic method, engineering design, and commercial process of DIOIPF.  相似文献   

13.
The thermal degradation of N,N′-bis(2 hydroxyethyl) linseed amide (BHLA) was investigated by thermogravimetric analysis coupled with Fourier transform infrared spectroscopy and mass spectroscopy (TG–FTIR–MS). Thermogravimetric analysis revealed that the thermal degradation process can be subdivided into three stages: sample drying (<200 °C), main decomposition (200–500 °C), and further cracking (>500 °C) of the polymer. The compound reached almost 800 °C during pyrolysis and combustion. The activation energy at the second step during combustion was slightly higher than that of pyrolysis emissions of carbon dioxide, aliphatic hydrocarbons, carbon monoxide, and hydrogen cyanide, and other gases during combustion and pyrolysis were detected by FTIR and MS spectra. It was observed that the intensities of CO2, CO, HCN, and H2O were very high when compared with their intensities during pyrolysis, and this was attributed to the oxidation of the decomposition product.  相似文献   

14.
The study describes the thermal properties of porous microspheres synthesized with functional monomer 4-vinylpyridine (4VP) and crosslinking agent trimethylolpropane trimethacrylate (TRIM). Polymeric 4VP–TRIM microspheres were prepared via seed polymerization, using polystyrene microbeads as a shape template. The resulting 4VP–TRIM microspheres were in the range of 9–12 μm, with specific surface area of about 200 m2 g?1. The thermal properties of 4VP–TRIM materials were evaluated by thermogravimetry and differential scanning calorimetry. By TG/FTIR/MS, it was observed that new porous materials exhibited multi-staged decomposition patterns, different from poly(TRIM) microspheres. DSC and TG experiments showed that water molecules were absorbed on the materials’ surface. The synthesized 4VP–TRIM microspheres exhibited rather high thermal stability. Their initial decomposition temperature was about 300 °C. During the microspheres’ decomposition, an evolution of carbon dioxide, water, and carbon monoxide as main gases, as well as of pyridine and aliphatic compounds, was observed. It was confirmed that the evolved pyridine accelerated the degradation of copolymeric network.  相似文献   

15.
Polystyrene was crosslinked in either 1,2-dichloroethane or carbon tetrachloride in the presence of aluminum chloride. Apparently, the reactions involve Friedel–Crafts substitution of phenyl ring with CH2CH2Cl or CCl3 groups, which than participate in crosslinking, giving CH2CH2 or CCl2, CCl, and C bridges. In the first stage a charge-transfer complex is formed between AlCl3, polystyrene and the solvent. After heating this complex above 35–40°C a rapid formation of HCl occurs and a crosslinked polymer is formed. This final product is insoluble, infusible, and inflammable. It decomposes at 400°C without melting.  相似文献   

16.
4-Vinylpyridinium trifluoromethanesulfonate monomers substituted at nitrogen with H, O, CH3, C2H5, C6H13, and C12H25 were synthesized and characterized spectroscopically. Thermal analyses (DSC and TGA) were carried out on all the compounds. The solid monomers (N? H, N? CH3, N? C6H13, and N? C12H25) exhibited endothermic melting followed by exothermic polymerization and exothermic decomposition (>400°C). Liquid N? C2H5 monomer revealed only exothermic polymerization and decomposition. The N? O polymer underwent thermal decomposition below 300°C. The N–C12H25 homopolymer, prepared from monomer in the DSC or in bulk, displayed an unusual thermal transition at 250°C, which has been attributed to a polymer backbone reorientation leading to side-chain ordering of the dodecyl groups.  相似文献   

17.
This paper reports on a novel processing route for producing ZrO2/GrO nanocomposites by solid-state thermal decomposition of zirconium acetate nanostructures and graphene as starting reagents, powders were carried out in the temperature 200 °C for 2 h. In addition, nanocomposites of ZrO2/GrO were obtained by solid-state thermal decomposition of the as-synthesized graphene oxide and Zr(CH3COO)2·4H2O. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, atomic force microscope, photoluminescence spectroscopy and Thermogravimetric analysis. The sublimation process of the Zr(OAc)2 and GrO powder were carried out within the range of 210, 220 and 230 °C. The XRD studies indicated the production of pure ZrO2/GrO nanocomposites after thermal decomposition.  相似文献   

18.
In the present work, kinetics of thermal decomposition of 2,2-dinitropropyl acrylate–styrene copolymer (DNPA/St) and 2,2-dinitropropyl acrylate–vinyl acetate copolymer (DNPA/VAc) was investigated by differential scanning calorimetry (DSC). The influence of the heating rate (5, 10, 15, and 20 °C min?1) on the DSC behavior of the copolymer was verified. The results showed that, as the heating rate was increased, decomposition temperature of the copolymer was increased. Also, the kinetic parameters such as activation energy and frequency factor of the copolymer were obtained from the DSC data by the isoconversional methods proposed by Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO). Average activation energy obtained by KAS and FWO methods for the thermal decomposition reaction of DNPA/St and DNPA/VAc are 157.38 ± 0.27 and 147.67 ± 0.57 kJ mol?1, respectively. The rate constants for thermal decomposition calculated from the activation parameters showed the structural dependency. The relative stability of two copolymers under 50 °C was in this order: DNPA/St > DNPA/VAc. The results of thermogravimetry (TG) analysis revealed that the main mass changes for DNPA/St and DNPA/VAc occurred in the temperature ranges of 200–270 °C. The DSC-FTIR analysis of DNPA/St indicates that the band intensity of nitro and other groups increased haphazardly from 230 °C due to thermal decomposition.  相似文献   

19.
Thermomechanical analysis, TMA, was used to evaluate the linear thermal expansion coefficient,α, of four different types of dental amalgams: Conventional lathe-cut alloy, conventional spheralloy, high copper dispersalloy and high copper ternary alloy. Dynamic thermal expansion studies showed an interesting contraction behaviour around 85 °C for conventional amalgams and 105 °C for high copper amalgams which coincided with the endotherms produced by differential scanning calorimetry, DSC, and was attributed to the existence of theγ 2 andγ 1 phases, respectively. Pure single phases were prepared and characterized by DSC at 210 °C forγ 2 and 120 °C forγ 1. When theγ 2 was enriched with mercury, the decomposition endotherm showed gradual shift to lower temperatures and reached 85 °C. The value of the linear coefficient of thermal expansion ranged between 15 and 35 ppm/°C for all the investigated brands. Thermomechanical analysis has confirmed previous results achieved by DSC in characterizing mercury-containing phases in dental amalgams.  相似文献   

20.
This study is devoted to the thermal decomposition of ZnC2O4·2H2O, which was synthesized by solid-state reaction using C2H2O4·2H2O and Zn(CH3COO)2·2H2O as raw materials. The initial samples and the final solid thermal decomposition products were characterized by Fourier transform infrared and X-ray diffraction. The particle size of the products was observed by transmission electron microscopy. The thermal decomposition behavior was investigated by thermogravimetry, derivative thermogravimetric and differential thermal analysis. Experimental results show that the thermal decomposition reaction includes two stages: dehydration and decomposition, with nanostructured ZnO as the final solid product. The Ozawa integral method along with Coats–Redfern integral method was used to determine the kinetic model and kinetic parameters of the second thermal decomposition stage of ZnC2O4·2H2O. After calculation and comparison, the decomposition conforms to the nucleation and growth model and the physical interpretation is summarized. The activation energy and the kinetic mechanism function are determined to be 119.7 kJ mol?1 and G(α) = ?ln(1 – α)1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号