首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
In this research high-quality zinc oxide (ZnO) nanowires have been synthesized by thermal oxidation of metallic Zn thin films. Metallic Zn films with thicknesses of 250 nm have been deposited on a glass substrate by the PVD technique. The deposited zinc thin films were oxidized in air at various temperatures ranging between 450 °C to 650 °C. Surface morphology, structural and optical properties of the ZnO nanowires were examined by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. XRD analysis demonstrated that the ZnO nanowires has a wurtzite structure with orientation of (002), and the nanowires prepared at 600 °C has a better crystalline quality than samples prepared at other temperatures. SEM results indicate that by increasing the oxidation temperature, the dimensions of the ZnO nanowires increase. The optimum temperature for synthesizing high density, ZnO nanowires was determined to be 600 °C. EDX results revealed that only Zn and O are present in the samples, indicating a pure ZnO composition. The PL spectra of as-synthesized nanowires exhibited a strong UV emission and a relatively weak green emission.  相似文献   

2.
采用简单的相转化方法合成出直径为20~30 nm、长度为几微米的β-Ni(OH)_2纳米线.利用XRD和FESEM表征了样品的结构和形貌,并采用循环伏安法、恒流充放电和交流阻抗谱等测试了样品的电化学性能.结果表明,在氢氧化钠溶液中,水热时间为30 min时,Paraotwayite型α-Ni(OH)_2纳米线转化为β-Ni(OH)_2纳米线.在不同扫描速率下,电极材料α-Ni(OH)_2和β-Ni(OH)_2纳米线的可逆性和倍率性能均优于β-Ni(OH)_2纳米片.  相似文献   

3.
基于水浴法在光纤纤芯上合成了ZnO纳米线, 得到了圆柱形微纳米跨尺度结构. 将纳米级的随机粗糙表面叠加到微米级的圆柱形基底上, 实现了对圆柱形跨尺度结构表面形貌的仿真分析. 采用扫描电子显微镜(SEM)并结合Matlab图像处理算子对跨尺度结构的表面形貌和ZnO纳米线的几何特征参数进行了表征. 与ZnO纳米线薄膜实际轮廓提取出的特征参数相同, 对均方根粗糙度为39.2 nm、偏斜度为0.1324及峭度为2.7146的圆柱形粗糙表面进行了仿真, 验证了仿真表面与实际轮廓的一致性. 建立了合成工艺参数对ZnO纳米线的长度、直径及长径比等几何特征参数的影响关系, 确定最佳工艺条件为: 种子层溶液Zn2+浓度为1.0 mmol/L, 生长液Zn2+浓度为0.03 mol/L, 生长时间为1.5 h, 水浴恒温90℃.  相似文献   

4.
Pure and Co-doped ZnO nanorods have been synthesized by a hydrothermal process. The structure, morphology and properties of as-prepared samples have been studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectrometer as well as by superconducting quantum interference device (SQUID). The structure and morphology analyses show that Co doping can slightly impede the ZnO crystallinity, influence the nanorods morphology, but cannot change the preferred growth orientation of ZnO nanorods. The amount of Co doping contents is about 3.0 at% in ZnO nanorods and dopant Co2+ ions substitute Zn2+ ions sites in ZnO nanocrystal without forming any secondary phase. The optical measurements show that the Co doping can effectively tune energy band structure and enrich surface states in both UV and VL regions, which lead to novel PL properties of ZnO nanorods. In addition, ferromagnetic ordering of the as-synthesized Zn1?xCoxO nanorod arrays has been observed at room temperature, which should be ascribed to sp–d and d–d carrier exchange interactions and presence of abundant defects and oxygen vacancies.  相似文献   

5.
"Sulfur-doped zinc oxide (ZnO) nanowires were successfully synthesized by an electric field-assisted electrochemical deposition in porous anodized aluminum oxide template at room temperature. The structure, morphology, chemical composition and photoluminescence properties of the as-synthesized ZnO:S nanostructures were investigated. X-ray diffraction and the selected area electron diffraction results reveal that the as-ynthesized products are single phase with hexagonal wurtzite structure with a highly preferential orientation in the (101) direction. Transmission electron microscopy observations indicate that the nanowires are niform with an average diameter of 70 nm and length up to several tens of micrometers. X-ray photoelectron pectroscopy further reveals the presence of S in the ZnO nanowires. Room-temperature photoluminescences observed in the sulfur-doped ZnO nanowires which exhibits strong near-band-edge ultraviolet peaks at 378 and 392 nm and weak green emissions at 533 and 507 nm. A blue emission at 456 nm and violet emissions at around 406, 420, and 434 nm were also observed in the PL spectrum for the as-synthesized ZnO:S nanowires. The PL spectrum shows that S-doping had an obvious effect on the luminescence property of typical ZnO nanowires."  相似文献   

6.
Saw-like nanostructures composed of single-crystalline ZnO nanobelts and single-crystalline ZnS nanowires have been successfully synthesized by a vapor-solid process. Several techniques, including scanning electron microscope, transmission electron microscopy, and photoluminescence spectroscopy, were used to investigate the structures, morphology, and photoluminescence properties of the products. Due to the similar crystal habits of wurtzite ZnO and ZnS with chemically active Zn-terminated (0001) and chemically inactive O-terminated (or S-terminated) (000) polar surfaces, hierarchical saw-like nanostructures were considered to be formed by the initiation of a chemically active Zn-terminated ZnO (0001) polar surface. Photoluminescence properties of the heterostructures, different from pure ZnO nanobelts or ZnS nanowires, were also studied at room temperature.  相似文献   

7.
A new process enabling the synthesis of zinc oxide (ZnO) and Al-doped ZnO nanowires (NWs) for photosensing applications is reported. By combining atomic layer deposition (ALD) for the seed layer preparation and electrodeposition for the NW growth, high-quality ZnO nanomaterials were prepared and tested as ultraviolet (UV) sensors. The obtained NWs are grown as arrays perpendicular to the substrate surface and present diameters between 70 and 130 nm depending on the Al doping, as seen from scanning electron microscopy (SEM) studies. Their hexagonal microstructure has been determined using X-ray diffraction and Raman spectroscopy. An excellent performance in UV sensing has been observed for the ZnO NWs with low Al doping, and a maximal photoresponse current of 11.1 mA has been measured. In addition, initial studies on the stability have shown that the NW photoresponse currents are stable, even after ten UV on/off cycles.  相似文献   

8.
The unique two-dimensional structure and surface chemistry of reduced graphene oxide (rGO) along with its high electrical conductivity can be exploited to modify the electrochemical properties of ZnO nanoparticles (NPs). ZnO–rGO nanohybrids can be engineered in a simple new two-step synthesis, which is both fast and energy-efficient. The resulting hybrid materials show excellent electrocatalytic and photocatalytic activity. The structure and composition of the as-prepared bare ZnO nanorods (NRs) and the ZnO–rGO hybrids have been extensively characterised and the optical properties subsequently studied by UV/Vis spectroscopy and photoluminescence (PL) spectroscopy (including decay lifetime measurements). The photocatalytic degradation of Rhodamine B (RhB) dye is enhanced using the ZnO–rGO hybrids as compared to bare ZnO NRs. Furthermore, potentiometry comparing ZnO and ZnO–rGO electrodes reveals a featureless capacitive background for an Ar-saturated solution whereas for an O2-saturated solution a well-defined redox peak was observed using both electrodes. The change in reduction potential and significant increase in current density demonstrates that the hybrid core–shell NRs possess remarkable electrocatalytic activity for the oxygen reduction reaction (ORR) as compared to NRs of ZnO alone.  相似文献   

9.
In this study, we are reporting on the electrochemical deposition of two kinds of semiconducting nanowires (ZnO and CuSCN) on different substrates. ZnO and CuSCN are n- and p-type transparent semiconductors whose electrochemical preparation has some similarity, and it is a combination of two steps: an electrochemical reduction with consecutive chemical precipitation. Here, we show that despite the different physicochemical nature of the studied materials, when they are deposited electrochemically, their dimensions depend mainly on the surface state of the used substrate. Thus, depending on the substrate morphology, nanowires with diameters between 50 and 380 nm from both semiconductors could be grown. It is also shown that ZnO and CuSCN nanowires could be successfully grown on glass and plastic substrates as well as on a metallic one. The possibility of growing these transparent semiconductors on flexible substrates opens new perspectives for their use in “invisible” electronic devices.  相似文献   

10.
High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV–visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10−3 min−1 in case of nanoparticles and 4.2·10−3 min−1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.  相似文献   

11.
The terahertz absorption coefficient, index of refraction, and conductivity of nanostructured ZnO have been determined using time-resolved terahertz spectroscopy, a noncontact optical probe. ZnO properties were measured directly for thin films and were extracted from measurements of nanowire arrays and mesoporous nanoparticle films by applying Bruggeman effective medium theory to the composite samples. Annealing significantly reduces the intrinsic carrier concentration in the ZnO films and nanowires, which were grown by chemical bath deposition. The complex-valued, frequency-dependent photoconductivities for all morphologies were found to be similar at short pump-probe delay times. Fits using the Drude-Smith model show that films have the highest mobility, followed by nanowires and then nanoparticles, and that annealing the ZnO increases its mobility. Time constants for decay of photoinjected electron density in films are twice as long as those in nanowires and more than 5 times those for nanoparticles due to increased electron interaction with interfaces and grain boundaries in the smaller-grained materials. Implications for electron transport in dye-sensitized solar cells are discussed.  相似文献   

12.
A new route for synthesizing Ag-decorated ZnO nanowires (NWs) on conductive glass substrates using a one-step electrodeposition technique is described here. The structural, optical, and photoelectrochemical properties of Ag-decorated ZnO nanowires were studied in detail using techniques such X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible spectroscopy, photoluminescence, and photoelectrochemical measurements. Both pure and Ag-decorated ZnO nanowires were found to crystallize in the wurtzite structure, irrespective of their Ag contents. Increasing the Ag content from pure ZnO NWs to 3% Ag ZnO NWs decreases the photoluminescence intensity, shifts the optical band gap to the red, and increases the photocurrent up to threefold. This behavior was attributed to the surface plasmon resonance effect induced by the Ag nanoparticles, which inhibits charge recombination and improves charge transport on the ZnO surface.  相似文献   

13.
Quasi-1D ZnO nanowires (NWs) ordered as patterned 3D hollow hierarchical urchin-like structures have been prepared on transparent conducting substrates by electrodeposition. The ZnO NWs have been grown on self-assembled ordered polystyrene microspheres with electrical charge densities ranging from 5 to 30 C cm(-2) and organized arrays of mono and multi-urchin layers have been built. These layers have been sensitized by the highly absorbing D149 indoline organic dye. The optical characterizations and dye titrations have shown a significant increase in the light scattering and absorption as well as dye loading for the organized structures compared to randomly vertically aligned ZnO NWs grown under the same conditions. The dye-sensitized solar cells (DSSC) prepared using the sensitized layers have been characterized by current-voltage (J-V) measurements, IPCE and by electrochemical impedance spectroscopy. We show that the best performances are obtained for the 3D urchin monolayer structures. The conversion efficiency is increased by up to 4 times compared to their counterparts made of randomly dispersed vertical ZnO NWs. Impedance spectroscopy results show a very fast charge transfer in the ZnO NWs and urchin monolayers and that the electron lifetime is in the 4-14 ms range.  相似文献   

14.
Almost vertically aligned ZnO nanowires have been grown on Silicon substrates via a simple hydrothermal method. In order to improve the photoelectric conversion efficiency for fabricated dye-sensitized solar cells (DSSCs), an easily-operated immersing method was employed to fabricate a TiO2/ZnO nanowires array heterojunction, which has advantage of high aspect ratio, low recombination rate and high absorption of visible light. The structure and surface morphology of the samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. The photovoltaic properties of TiO2/ZnO based DSCCs were measured by considering the power efficiency (η), photocurrent density (Jsc), open-circuit voltage (Voc), and fill factor (FF). An efficiency of 0.559% is achieved for the composite cell, increasing 0.426 and 0.185% for the ZnO nanowires cell and TiO2 cell, respectively. The short-circuit current and open-circuit voltage are also enhancing. The improvements are because of high surface are of TiO2 shell layer, as well as fast electron transport and light scattering effect of ZnO nanowires.  相似文献   

15.
In this paper, we investigate the roles of gold catalyst using modified thermal evaporation set-up in the growth process of ZnMgO nanowires. ZnMgO nanowires are fabricated on silicon substrates using different thickness of gold catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursors, based on Fick’s first law, is used to grow the ZnMgO nanowires. Field emission scanning electron microscopy images show that the ZnMgO nanowires are tapered. The optical properties of the ZnMgO nanowires are characterized by room temperature photoluminescence (PL) measurements. The PL studies demonstrate that the ZnMgO nanowires grown using this method have good crystallinity with excellent optical properties and have a larger band-gap in comparison to the pure ZnO nanowires. Field emission characterization shows that the turn-on field for the nanowires grown on the thinner gold film is lower than those grown on the thicker gold film.  相似文献   

16.
ZnO纳米线的电化学制备研究   总被引:10,自引:0,他引:10  
High-quality ZnO nanowires have been synthesized at relatively low temperature via one-step electrochemical anodization technique. In this method, Zn sheet acted as the anode and Pb sheet served as the counter electrode, and the complex solution of HF-C2H5OH-H2O was used as electrolyte. ZnO nanowires were characterized by Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED) and X-ray Diffraction (XRD). The results show that the nanowires were wurtzite crystalline ZnO, and the ZnO nanowires with the diameters of 70 nm and 30~40 nm were obtained by adjusting preparation conditions, respectively.  相似文献   

17.
The toxic dye pigments, even in small quantities, can damage ecosystems. Removing organic, inorganic, and microbiological contaminants from wastewater via heterogeneous photocatalysis is a promising method. Herein, we report the band structure tuning of ZnO/CuO nanocomposites to enhance photocatalytic activity. The nanocomposites were synthesized by a chemical approach using step-wise implantation of p-type semiconductor CuO to n-type semiconductor ZnO. Various characterization techniques such as X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX) and UV spectroscopy were used to investigate the crystal structure, surface morphology, elemental composition and optical properties of the synthesized samples. As the CuO content increased from 10% to 50% in ZnO/CuO nanocomposites, the optical bandgap decreased from 3.36 to 2.14 eV. The photocatalytic activity of the samples was evaluated against the degradation of methylene blue (MB) under visible irradiation. Our study demonstrates a novel p–n junction oxide photocatalyst based on wt. 10% CuO/ZnO with superior photocatalytic activity. Effectively 66.6% increase in degradation rate was achieved for wt. 10% CuO/ZnO nanocomposite compared to pure ZnO nanoparticles.  相似文献   

18.
利用Pd催化合成单晶GaN纳米线的光学特性(英文)   总被引:1,自引:0,他引:1  
基于金属元素钯具有的催化特性,采用射频磁控溅射方法,在Si(111)衬底上沉积Pd:Ga2O3薄膜,然后在950℃下对薄膜进行氨化,制备出大量GaN纳米线.采用扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等技术手段对样品的结构、形貌和成分进行分析.结果表明,制备的样品为具有六方纤锌矿结构的单晶GaN纳米线,直径在20-60nm范围内,长度为几十微米,表面光滑无杂质,结晶质量较高.用光致发光光谱对样品的发光特性进行测试,分别在361.1、388.6和426.3nm处出现三个发光峰,且与GaN体材料相比近带边紫外发光峰发生了较弱的蓝移.对GaN纳米线的生长机制也进行了简单的讨论.  相似文献   

19.
高利聪  贺英  周利寅 《化学学报》2008,66(14):1713-1719
采用独特的高分子溶液自组装生长方法, 在经化学镀预处理的基底上利用高分子溶液的网络络合效应制备了ZnO纳米线. 通过场发射扫描电子显微镜(FE-SEM), X射线能谱仪(EDS)等对样品的表面形貌及组成进行了观测表征. 结果显示, 纳米线直径约50 nm, 长度达到了数微米; 产物Zn、O化学计量比接近1∶1. 通过Si基底经化学镀工艺预处理和未经化学镀预处理对ZnO纳米结构、紫外吸收和PL性能影响的分析比较, 发现了化学镀Ni对于纳米线长度和直径尺寸的控制更为有效; 在PL图谱中, 经化学镀预处理的样品在中心波长385 nm出现了由激子碰撞复合所形成的近紫外发光峰. 进一步还分析了在不同的pH值和反应时间下样品的紫外吸收和光致发光性能. 通过以上实验, 讨论并提出了ZnO纳米线的生长机理及过程, 认为纳米线的生长是在化学镀催化剂和高分子双重作用下进行的.  相似文献   

20.
Connected zinc oxide (ZnO) nanoparticles are successfully synthesized by a simple solution‐based chemical route that uses evaporation and concentration technology. The influences of processing parameters, especially the evaporation and concentration time on the size and morphology of the nanoparticles, have been investigated by transmission electron microscopy (TEM) and high‐resolution TEM (HRTEM). The structure and optical properties are systematically characterized by X‐ray diffraction (XRD), UV/Vis spectrophotometery, and fluorescence spectroscopy (FL). It is found that the average diameter and morphology are strongly affected by the evaporation and concentration time. Additionally, the formation mechanism of the nanoparticles is also discussed. The studies revealed that the evaporation and concentration are important aggregation or nucleation processes for ZnO growth, which leads to the macro‐differences in morphology. These results provide some insight into the growth mechanism of ZnO nanostructures. The synthetic strategy developed in this study may also be extended to the preparation of other nanomaterials and promising applications in various fields of nanotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号