首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Like many separation processes, ultrafiltration and reverse osmosis are often compromised by concentration polarization. Such polarization can be mitigated by static mixers and other flow barriers placed as spacers next to the membrane surface. These spacers can be shaped like ladders, herringbones, and helices. The effect of these spacers can be successfully predicted without adjustable parameters from extensions of the Lévêque equation. The predictions are in agreement with results of computational fluid mechanics and with electrochemical experiments. They supply a tool for optimizing spacer design.  相似文献   

2.
Adjusting the spacers between the electron-acceptor and the elector-donor is important to design organic ternary memory material but rarely reported. In this paper, two small molecules, ZIPGA and ZIPCAD with benzene ring or triphenylamine as the spacers, were designed and synthesized to fabricate memory devices. The Al/ZIPGA/indium-tin oxide (ITO) device showed ternary characteristics, whereas Al/ZIPCAD/ITO had no obvious memory characteristics. Density functional theory calculation, X-ray diffraction (XRD) and atomic force microscopy (AFM) were employed to interpret the different memory properties. ZIPGA thin film has the closer intermolecular packing and flatter surface morphology than ZIPCAD film, which was favorable to the electron migration. This work demonstrates the importance of spacers and reveals that triphenylamine may be not a good spacer in design of new memory material.  相似文献   

3.
A class of fluorescent films in which pyrene was assembled, in a monolayer manner, on glass slide surfaces via various flexible spacers of different lengths and substructures was used for the detection of nitroaromatic compounds (NACs) in vapor phase. This design strategy offers several advantages for thin film fluorescent sensory materials. These advantages have been demonstrated experimentally by the sensitive response of the films to the presence of trace amounts of NACs in vapor phase. The fluorescence quenching of the films upon exposure to NACs vapors depends on several factors, including the evaporate rate of the NAC detected, the length of the spacers connecting the sensing element and the substrate surface, and the density of the sensing element on the substrate surface. Further experimentation showed that the sensing process is reversible and free of commonly encountered interference. The sensitive response, reversibility of the sensing process, and freedom from commonly encountered interference of the specially designed films to NACs qualify these materials as promising NACs fluorescent sensory materials.  相似文献   

4.
Ion-conducting spacers were prepared by applying an ion-exchange coating to commercially available polypropylene netting. Homogeneous and heterogeneous types of coating were used. Homogeneous anion-exchange coating consisted of bromomethylated and aminated polysulfone, homogeneous cation-exchange coating of sulfonated polysulfone. All heterogeneous coatings consisted of ground ion-exchange resin, embedded in crosslinked poly(vinyl alcohol). All the coated spacers increased the rate of desalting of sodium chloride solutions, at concentrations of 20 mM or less. The effect increased with the ion-exchange capacity of the spacer per unit area. The spacers suppress polarization, leading to increased current efficiency and decreased cell resistance. As expected, largest decrease of cell resistance is obtained in dilute solutions, <3 mM. The clearest effect on efficiency was observed in ED with heterogeneous ion-exchange membranes, which are by themselves highly polarizing. Most experiments were carried out with anion-exchange spacers, minimizing the water splitting which takes place at the surface of the ion-exchange membrane. Introduction of an anion-exchange spacer near the heterogeneous anion-exchange membrane and a cation-exchange spacer near the heterogeneous cation-exchange membrane led to a dramatic increase in current efficiency.  相似文献   

5.
Photoisomerization in some azobenzene-containing polymers (azopolymers) results in reversible solid-to-liquid transitions because trans- and cis-azopolymers have different glass transition temperatures. This property enables photoinduced healing and processing of azopolymers with high spatiotemporal resolution. However, a general lack of knowledge about the influence of the polymer structure on photoinduced reversible solid-to-liquid transitions hinders the design of such novel polymers. Herein, the synthesis and photoresponsive behavior of new azopolymers with different lengths of spacers between the polymer backbone and the azobenzene group on the side chain are reported. Azopolymers with no and 20 methylene spacers did not show photoinduced solid-to-liquid transitions. Azopolymers with 6 or 12 methylene spacers showed photoinduced solid-to-liquid transitions. This study demonstrates that spacers are essential for azopolymers with photoinduced reversible solid-to-liquid transitions, and thus, gives an insight into how to design azopolymers for photoinduced healing and processing.  相似文献   

6.
This paper presents a novel membrane design for capacitive micromachined ultrasonic transducers (cMUTs). The proposed design is composed of a thick membrane with reinforcing beams supported by a circumferential thin membrane to improve transducer sensitivity without degrading the membrane resonance frequency. Analytical formulation of sensitivity for the proposed design was newly derived and its validity was verified by finite element analysis (FEA). From the analysis, we confirmed that this thick membrane structure achieved three times higher sensitivity compared to the conventional design by decreasing 70 % of the mass of the thick membrane part with keeping the resonance frequency same.  相似文献   

7.
Estrogen receptors are known drug targets that have been linked to several kinds of cancer. The structure of the estrogen receptor ligand binding domain is available and reveals a homodimeric layout. In order to improve the binding affinity of known estrogen receptor inhibitors, bivalent compounds have been developed that consist of two individual ligands linked by flexible tethers serving as spacers. So far, binding affinities of the bivalent compounds do not surpass their monovalent counterparts. In this article, we focus our attention on the molecular spacers that are used to connect the individual ligands to form bivalent compounds, and describe their thermodynamic contribution during the ligand binding process. We use computational methods to predict structural and entropic parameters of different spacer structures. We find that flexible spacers introduce a number of effects that may interfere with ligand binding and possibly can be connected to the low binding affinities that have been reported in binding assays. Based on these findings, we try to provide guidelines for the design of novel molecular spacers.  相似文献   

8.
The most common spacers or turbulence promoters for membrane processes are net-like materials which enhance mass transfer as well as provide passage for feed solutions. The enhanced membrane performance of spacer-filled channels is determined by the fluid flow patterns induced by the spacer filaments. Insight into the effect of spacer characteristics can be obtained by computational fluid dynamics. In this research, the commercial finite volume package FLUENT was used to visualise the flow pattern in a rectangular membrane channel. Three transverse filament arrangements were simulated. The results show that both high shear stress regions and eddies are present in the channel due to the spacer cylinders. The mass transfer enhancement on the wall/membrane surface is directly related to the high shear stress value, velocity fluctuation, and eddy formation. The peak shear stress and velocity fluctuation are repeated after each spacer cylinder, while the eddies are generally found before and after each cylinder. The CFD simulation also suggests that reducing the transverse filament distance will reduce the distance between shear stress peaks and consequently introduce larger shear stress regions near the wall region and increase the number of eddies, which will benefit membrane mass transfer. However, the penalty for this is that energy losses will also be significantly increased. The selection of optimum spacer geometry design involves a trade-off between these competing effects.  相似文献   

9.
A new technique has been established to fabricate thin film composite membranes, by which a hydrophilic polymer could be coated in thin film on a hydrophobic support membrane. The new technique was composed of two steps: dispersion of a reactant to the hydrophilic polymer in the hydrophobic support membrane and interfacial reaction between the reactant and the hydrophilic polymer to produce thin film of the hydrophilic polymer on the support membrane. Composite membranes in which a thin film of sodium alginate is coated on a polysulfone support membrane were prepared by the new technique for the reverse osmosis separation of anionic surfactant–water mixture. Two methods were employed to fabricate a thin film of sodium alginate on the support membrane: (1) dispersion of the crosslinking agent, CaCl2 alone in the support membrane and (2) dispersion of CaCl2 in the support membrane with help of PVA which adheres fast to the support membrane. The formation mechanism of the thin layer was suggested schematically on each method. Both the methods could produce successively a thin layer of SA on the support membrane. Especially, method (2) gave a strong bonding of the thin layer on the support because of the large contact area with the support through the PVA layer which sticks fast to the SA layer. From the SEM pictures and permeation experiments, the method (2) was confirmed to be better to produce a defect-free thin film of SA on the support membrane.  相似文献   

10.
Self‐immolative spacers are covalent assemblies tailored to correlate the cleavage of two chemical bonds after activation of a protective part in a precursor: Upon stimulation, the protective moiety is removed, which generates a cascade of disassembling reactions leading to the temporally sequential release of smaller molecules. Originally introduced to overcome limitations for drug delivery, self‐immolative spacers have gained wide interest in medicinal chemistry, analytical chemistry, and material science. For most applications, the kinetics of the disassembly of the activated self‐immolative spacer governs functional properties. This Review addresses kinetic aspects of self‐immolation. It provides information for selecting a particular self‐immolative motif for a specific demand. Moreover, it should help researchers design kinetic experiments and fully exploit the rich perspectives of self‐immolative spacers.  相似文献   

11.
Addition of large organic molecules to halide perovskites has been shown to provoke dimensionality reduction and formation of two-dimensional phases that demonstrate improved long-term stabilities. Optoelectronic properties of the resulting 2D layered perovskites are strongly influenced by the chemical nature of the additive molecules, which opens immense possibilities for preparation of materials with tailored properties. However, given the huge chemical space of possible organic spacers, a systematic and exhaustive search for optimal compounds is impossible and general structure–property relationships that could guide a rational design are still largely absent. Here, we provide an overview of a series of recent computational studies from our group on different types of spacers. We first develop a simplified universal monovalent cation model to map out approximate structural stability maps as a function of the van der Waals radius and the magnitude of dispersion interactions to monitor the possible emergence of 2D phases. We further provide structural and photophysical insights from classical and first-principles molecular dynamics simulations and density functional theory calculations on 2D hybrid perovskites based on a wide range of spacers with different chemical nature and varying conformational properties. Our computational predictions are validated through comparison with powder diffraction, conductivity and optical measurements. Such comparative study allows for providing some general structure–property correlations, which can serve as design guidelines in the search for optimal 2D and mixed 2D/3D perovskite photovoltaic materials.  相似文献   

12.
Polymeric materials containing chromophores are promising for electroluminescent (EL) device applications including displays and lighting. We report EL for a series of copolymers containing uniform conjugated chromophores and nonconjugated spacers. The emission color of the copolymers can be varied by adjusting the molecular structure to alter the energy gap between the HOMO and LUMO of the chromophore. The design can also be used to tailor other properties of the polymer, such as the glass transition temperature, by varying the length of the nonconjugated spacers.  相似文献   

13.
The effect of spacer geometry on fluid dynamics and mass transfer in feed channels of spiral wound membranes has been investigated. Three-dimensional computational fluid dynamics (CFD) simulations reveal significant influence of spacer geometric parameters such as filament spacing, thickness and flow attack angle on wall shear rates and mass transfer coefficients. The spacers with filaments in axial and transverse direction induce higher shear stresses at the top membrane surface when compared to the bottom; the mass transfer rates are almost equal. The distribution of mass transfer coefficients become uniform when the spacing between axial filaments is increased or transverse filament thickness is decreased. For spacers with filaments inclined to the channel axis, the flow structure depends on spacing and flow attack angle. The fluid follows a zigzag path when spacing is greater while it begins to line-up with the filaments when spacing is reduced or flow attack angle is increased. The flow when aligned with the filaments increases the wall shear stress but confines the region of higher mass transfer coefficient values to a narrower portion. The zigzag flow movement increases these values on a major portion of membrane surface which enhances the mass transfer rates.  相似文献   

14.
A series of conjugated/non-conjugated copolymers and their corresponding oligomers were prepared and their optical and physical properties were investigated for understanding the merit of blocking the conjugated chromophores with non-conjugated spacers. It was found that compared to the oligomers, copolymers have the advantages of amorphous nature, high thermal stability, and good thin film processability without sacrificing the quantum efficiency and purity of the emission color. Furthermore, based on the optical data of these copolymers and oligomers, the conjugation length of the polyoctylthiophene was estimated to be extended over 23-31 octylthiophene rings.  相似文献   

15.
IntroductionPVC membrane- coated- wire electrodes areused in the analytical field widely. They are pre-pared usually with platinum wire,silver wire orgraphite rod coated with a PVC thin membranecontaining various active components and plasticiz-ers[1— 3 ] .The electrodes have no inner KCl solutionand they are notinfluenced by the sample pressure.Furthermore,they are free from directional selec-tivity when they are installed,and they can be mi-crominiaturized easily. The shortcomings of th…  相似文献   

16.
Both in electrodialysis and in reverse electrodialysis ionic shortcut currents through feed and drain channels cause a considerable loss in efficiency. Model calculations based on an equivalent electric system of a reverse electrodialysis stack reveal that the effect of these salt bridges could be reduced via a proper stack design. The critical parameters which are to be optimized are ρ/r and R/r, where ρ is the lateral resistance along the spacers, R is the resistance of the feed and drain channels between two adjacent cells, and r is the internal resistance of a cell. Because these two parameters are dimensionless, different stacks can be easily compared. The model is validated with two experimental stacks differing in membrane type and spacer thickness, one with large ionic shortcut currents and one where this effect is less. The loss in efficiency decreased from 25 to 5% for a well-designed stack. The loss of efficiency in reverse electrodialysis and in electrodialysis can be reduced with the aid of the design parameters presented in this paper.  相似文献   

17.
Layer-by-layer assembly was used to build thin films, consisting of multiple layers alternating cellulose nanocrystals and xyloglucan, benefiting from the strong non-electrostatic cellulose-xyloglucan interaction. Data from atomic force microscopy and neutron reflectivity showed that these well-defined films exhibited a thickness increasing linearly with the number of layers, without increase in surface roughness. These "green" nanocomposite films, reminiscent of plant cell wall, are composed of a regular stack of single layers of cellulose nanocrystals separated by very thin xyloglucan spacers. Such architecture differs from the one formed by cellulose/polycations multilayers, where the cellulose phase itself consists of a double layer.  相似文献   

18.
膜亲和色谱的现状、发展和应用   总被引:2,自引:0,他引:2  
文章对膜亲和色谱的原理、特点、设备、过程和发展情况做了介绍,并对亲和膜在整个膜分离技术中的地位、所占的比重及市场预测做了述评,对膜亲和色谱与其它色谱分离技术的优缺点进行了比较。重点介绍了制备亲和膜的材料,活化方法,间隔臂和配基的种类、选择和共价键合方法,配基和配合物产生亲和作用的机理及解离过程和方法。并对膜亲和色谱在酶、蛋白质、核糖核酸等生物大分子纯化分离方面的应用情况做了述评。  相似文献   

19.
The molecular structures and absorption spectra of triphenylamine dyes containing variable thiophene units as the spacers (TPA1-TPA3) were investigated by density functional theory (DFT) and time-dependent DFT. The calculated results indicate that the strong conjugation is formed in the dyes and the length of conjugate bridge increases gradually with the increased thiophene spacers. The interfacial charge transfer between the TiO2 electrode and TPA1-TPA3 are electron injection processes from the excited dyes to the semiconductor conduction band. The simulated absorption bands are assigned to π→π* transitions, which exhibit appreciable red-shift with respect to the experimental bands due to the lack of direct solute-solvent interaction and the inherent approximations in TD-DFT. The effect of thiophene spacers on the molecular structures, absorption spectra and photovoltaic performance were comparatively discussed and points out that the choice of appropriate conjugate bridge is very important for the design of new dyes with improved performance.  相似文献   

20.
The design and synthesis of several novel elongated self-elimination spacer systems for application in prodrugs is described. These elongated spacer systems can be incorporated between a cleavable specifier and the parent drug. Naphthalene- and biphenyl-containing spacers were synthesized but did not eliminate. Prodrugs of the anticancer agents doxorubicin and paclitaxel are reported that contain two or three electronic cascade spacers. A novel catalytic application of HOBt was found for the synthesis of N-aryl carbamates through reacting a 4-nitrophenyl carbonate with an aniline derivative, to connect the 1,6-elimination spacers via a carbamate linkage. In addition, a double spacer-containing paclitaxel prodrug was synthesized, comprising a 1,6-elimination spacer and a bis-amine linker connected to paclitaxel via a 2'-carbamate linkage. Prodrugs in which the novel spacer systems were incorporated between a specific tripeptide specifier and the parent drug doxorubicin or paclitaxel proved to be significantly faster activated by plasmin in comparison with prodrugs containing conventional spacer systems. It is expected that the generally applicable novel spacer systems reported herein will contribute to future development of improved enzymatically activated prodrugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号