首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.  相似文献   

2.
The infrared photodissociation spectra of [(CO(2))(n)(H(2)O)(m)](-) (n=1-4, m=1, 2) are measured in the 3000-3800 cm(-1) range. The [(CO(2))(n)(H(2)O)(1)](-) spectra are characterized by a sharp band around 3570 cm(-1) except for n=1; [(CO(2))(1)(H(2)O)(1)](-) does not photodissociate in the spectral range studied. The [(CO(2))(n)(H(2)O)(2)](-) (n=1, 2) species have similar spectral features with a broadband at approximately 3340 cm(-1). A drastic change in the spectral features is observed for [(CO(2))(3)(H(2)O)(2)](-), where sharp bands appear at 3224, 3321, 3364, 3438, and 3572 cm(-1). Ab initio calculations are performed at the MP2/6-311++G(**) level to provide structural information such as optimized structures, stabilization energies, and vibrational frequencies of the [(CO(2))(n)(H(2)O)(m)](-) species. Comparison between the experimental and theoretical results reveals rather size- and composition-specific hydration manner in [(CO(2))(n)(H(2)O)(m)](-): (1) the incorporated H(2)O is bonded to either CO(2) (-) or C(2)O(4) (-) through two equivalent OH...O hydrogen bonds to form a ring structure in [(CO(2))(n)(H(2)O)(1)](-); (2) two H(2)O molecules are independently bound to the O atoms of CO(2) (-) in [(CO(2))(n)(H(2)O)(2)](-) (n=1, 2); (3) a cyclic structure composed of CO(2) (-) and two H(2)O molecules is formed in [(CO(2))(3)(H(2)O)(2)](-).  相似文献   

3.
We report finite temperature quantum mechanical simulations of structural and dynamical properties of Ar(N)-CO(2) clusters using a path integral Monte Carlo algorithm. The simulations are based on a newly developed analytical Ar-CO(2) interaction potential obtained by fitting ab initio results to an anisotropic two-dimensional Morse∕Long-range function. The calculated distributions of argon atoms around the CO(2) molecule in Ar(N)-CO(2) clusters with different sizes are consistent to the previous studies of the configurations of the clusters. A first-order perturbation theory is used to quantitatively predict the CO(2) vibrational frequency shift in different clusters. The first-solvation shell is completed at N = 17. Interestingly, our simulations for larger Ar(N)-CO(2) clusters showed several different structures of the argon shell around the doped CO(2) molecule. The observed two distinct peaks (2338.8 and 2344.5 cm(-1)) in the υ(3) band of CO(2) may be due to the different arrangements of argon atoms around the dopant molecule.  相似文献   

4.
We report the vibrational predissociation spectrum of C(5)H(5)N-CO(2)(-), a radical anion which is closely related to the key intermediates postulated to control activation of CO(2) in photoelectrocatalysis with pyridine (Py). The anion is prepared by the reaction of Py vapor with (CO(2))(m)(-) clusters carried out in an ionized, supersonic entrainment ion source. Comparison with the results of harmonic frequency calculations establishes that this species is a covalently bound molecular anion derived from the corresponding carbamate, C(5)H(5)N-CO(2)(-) (H(+)). These results confirm the structural assignment inferred in an earlier analysis of the cluster distributions and photoelectron spectra of the mixed Py(m)(CO(2))(n)(-) complexes [J. Chem. Phys. 2000, 113 (2), 596-601]. The spectra of the (CO(2))(m)(-) (m = 5 and 7) clusters are presented for the first time in the lower energy range (1000-2400 cm(-1)), which reveal several of the fundamental modes that had only been characterized previously by their overtones and combination bands. Comparison of these new spectra with those displayed by Py(CO(2))(n)(-) suggests that a small fraction of the Py(CO(2))(n)(-) ions are trapped entrance channel reaction intermediates in which the charge remains localized on the (CO(2))(m)(-) part of the cluster.  相似文献   

5.
Ni(+)(CO(2))(n), Ni(+)(CO(2))(n)Ar, Ni(+)(CO(2))(n)Ne, and Ni(+)(O(2))(CO(2))(n) complexes are generated by laser vaporization in a pulsed supersonic expansion. The complexes are mass-selected in a reflectron time-of-flight mass spectrometer and studied by infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy. Photofragmentation proceeds exclusively through the loss of intact CO(2) molecules from Ni(+)(CO(2))(n) and Ni(+)(O(2))(CO(2))(n) complexes, and by elimination of the noble gas atom from Ni(+)(CO(2))(n)Ar and Ni(+)(CO(2))(n)Ne. Vibrational resonances are identified and assigned in the region of the asymmetric stretch of CO(2). Small complexes have resonances that are blueshifted from the asymmetric stretch of free CO(2), consistent with structures having linear Ni(+)-O=C=O configurations. Fragmentation of larger Ni(+)(CO(2))(n) clusters terminates at the size of n=4, and new vibrational bands assigned to external ligands are observed for n> or =5. These combined observations indicate that the coordination number for CO(2) molecules around Ni(+) is exactly four. Trends in the loss channels and spectra of Ni(+)(O(2))(CO(2))(n) clusters suggest that each oxygen atom occupies a different coordination site around a four-coordinate metal ion in these complexes. The spectra of larger Ni(+)(CO(2))(n) clusters provide evidence for an intracluster insertion reaction assisted by solvation, producing a metal oxide-carbonyl species as the reaction product.  相似文献   

6.
The mass-selected [(CO(2))(2)(H(2)O)(m)](-) cluster anions are studied using a combination of photoelectron imaging and photofragment mass spectroscopy at 355 nm. Photoelectron imaging studies are carried out on the mass-selected parent cluster anions in the m=2-6 size range; photofragmentation results are presented for m=3-11. While the photoelectron images suggest possible coexistence of the CO(2) (-)(H(2)O)(m)CO(2) and (O(2)CCO(2))(-)(H(2)O)(m) parent cluster structures, particularly for m=2 and 3, only the CO(2) (-) based clusters are both required and sufficient to explain all fragmentation pathways for m>/=3. Three types of anionic photofragments are observed: CO(2) (-)(H(2)O)(k), O(-)(H(2)O)(k), and CO(3) (-)(H(2)O)(k), k6) is attributed to hindrance from the H(2)O molecules.  相似文献   

7.
Theoretical study on the small clusters of LiH, NaH, BeH(2), and MgH(2)   总被引:1,自引:0,他引:1  
High-level ab initio molecular orbital theory is used to calculate the geometries, vibrational frequencies, atomic charges, and binding energies of the small clusters (LiH)(n), (NaH)(n), (BeH(2))(n), and (MgH(2))(n) (n = 1-4). For (LiH)(n) and (NaH)(n), there are planar cyclic structures when n = 2, 3. We have found the cubic structure T(d) in addition to the planar cyclic D(4)(h) when n = 4. The D(4)(h) is less stable than the T(d) geometry. For (BeH(2))(n) and (MgH(2))(n), when n = 3, there are three kinds of structures: chain C(2)(v), planar cyclic D(3)(h), and hat-like C(2)(v). The C(2)(v) geometry is more stable than the others. When n = 4, there are four kinds of structures: chain D(2)(h), cubic T(d), string-like C(2), and cubic transformation C(1). The most stable compounds in the families of (LiH)(n), (NaH)(n), (BeH(2))(n), and (MgH(2))(n) are cubic T(d), cubic T(d), chain D(2)(h), and string-like C(2) geometries, respectively, when n = 4. Calculated binding energies range from -24 to -37 kcal/mol for (LiH)(n) and --19 to -30 kcal/mol for (NaH)(n), (BeH(2))(n), and (MgH(2))(n). The hydrogen atoms in hydride clusters always have negative charges. The atomic charges of planar cyclic structures are weaker than those of cubic structures, and there is a tendency of reducing along with the increase of the cluster size. The vibrational frequencies of planar cyclic structures have consistent tendency, too. It indicates that the bond distance increases with the ionic character of the bond.  相似文献   

8.
The dihydrido-olefin complex OsH(2)(eta(2)-CH(2)=CHEt)(CO)(P(i)Pr(3))(2) (2) reacts with H(2)SiPh(2) to give OsH(3)(SiHPh(2))(CO)(P(i)Pr(3))(2) (3). The molecular structure of 3 has been determined by X-ray diffraction (monoclinic, space group P2(1)/c with a = 16.375(2) ?, b = 11.670(1) ?, c =18.806(2) ?, beta = 107.67(1) degrees, and Z = 4) together with ab initio calculations on the model compound OsH(3)(SiH(3))(CO)(PH(3))(2). The coordination geometry around the osmium center can be rationalized as a heavily distorted pentagonal bipyramid with one hydrido ligand and the carbonyl group in the axial positions. The two other hydrido ligands lie in the equatorial plane, one between the phosphine ligands and the other between the SiHPh(2) group and one of the phosphine ligands. Complex 3 can also be prepared by reaction of OsH(eta(2)-H(2)BH(2))(CO)(P(i)Pr(3))(2) (4) with H(2)SiPh(2). Similarly, the treatment of 4 with HSiPh(3) affords OsH(3)(SiPh(3))(CO)(P(i)Pr(3))(2) (5), while the addition of H(3)SiPh to 4 in methanol yields OsH(3){Si(OMe)(2)Ph}(CO)(P(i)Pr(3))(2) (6). Complex 2 also reacts with HGeR(3) and HSnR(3) to give OsH(3)(GeR(3))(CO)(P(i)Pr(3))(2) (GeR(3) = GeHPh(2) (7), GePh(3) (8), GeEt(3) (9)) and OsH(3)(SnR(3))(CO)(P(i)Pr(3))(2) (R = Ph (10), (n)Bu (11)), respectively. In solution, compounds 3 and 5-11 are fluxional and display similar (1)H and (31)P{(1)H} NMR spectra, suggesting that they possess a similar arrangement of ligands around the osmium atom.  相似文献   

9.
Reactions of silicon atoms and small clusters with carbon monoxide molecules in solid argon have been studied using matrix isolation infrared absorption spectroscopy. In addition to the previously reported SiCO monocarbonyl, Si(2)(CO)(2) and Si(n)CO (n=2-5) carbonyl molecules were formed spontaneously on annealing and were characterized on the basis of isotopic substitution and theoretical calculations. It was found that Si(2)CO, Si(3)CO, and Si(5)CO are bridge-bonded carbonyl compounds, whereas Si(4)CO is a terminal-bonded carbonyl molecule. The Si(2)(CO)(2) and Si(3)CO molecules photochemically rearranged to the more stable c-Si(2)(mu-O)(mu-CCO) and c-Si(2)(mu-O) (mu-CSi) isomers where Si(2) is inserted into the CO triple bond.  相似文献   

10.
Photoelectron images are recorded in the photodetachment of two series of cluster anions, (CO(2))(n)(-), n=4-9 and (CO(2))(n)(-).H(2)O, n=2-7, with linearly polarized 400 nm light. The energetics of the observed photodetachment bands compare well with previous studies, showing evidence for switching between two anionic core structures: The CO(2)(-) monomer and covalent (CO(2))(2)(-) dimer anions. The systematic study of photoelectron angular distributions (PADs) sheds light on the electronic structure of the different core anions and indicates that solvation by several CO(2) molecules and/or one water molecule has only moderate effect on the excess-electron orbitals. The observed PAD character is reconciled with the symmetry properties of the parent molecular orbitals. The most intriguing result concerns the PADs showing remarkable similarities between the monomer and dimer anion cluster-core types. This observation is explained by treating the highest-occupied molecular orbital of the covalent dimer anion as a linear combination of two spatially separated monomeric orbitals.  相似文献   

11.
Reaction of [(Tp(Me)2)(2)UI] with KNR(2) (R = C(6)H(5), SiMe(3)) in tetrahydrofuran (THF) afforded the monomeric trivalent actinide amide complexes [(Tp(Me)2)(2)U[N(C(6)H(5))(2)]], 1, and [(Tp(Me)2)(2)U[N(SiMe(3))(2)]], 2. The complexes have been fully characterized by spectroscopic methods and their structures were confirmed by X-ray crystallographic studies. In the solid state 1 and 2 exhibit distorted pentagonal bipyramidal geometries. The U-NR(2) bond lengths in both complexes are the same but in complex 2 the greater steric demands of the N(SiMe(3))(2) ligand led to elongated U-N(pz) bonds, especially those opposite the amido ligand.  相似文献   

12.
Cyclic carbon cluster dianions (CC(2))(2-)(n)(n = 3-6) are investigated by ab initio methods with regard to their geometric properties, electronic stability, and aromaticity. The unique wheel-like structures of these dianions consist of a n-membered carbon ring, where a C(2) unit is attached to each carbon atom. All investigated dianions represent stable gas-phase dianions. While the smallest member of this family (CC(2))(2-)(3) is clearly aromatic, the aromatic character decreases rapidly with increasing ring size. The geometries and the aromaticity of the cyclic clusters (CC(2))(2-)(n)(n = 3-6) can be nicely explained using resonance structure arguments.  相似文献   

13.
14.
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a.  相似文献   

15.
Reactions between unsaturated [H(2)Os(3)(CO)(9)(PR(3))] clusters (PR(3)= PPh(3), P(4-CF(3)-C(6)H(4))(3), PEt(3)) and 2,4-hexadiyne-1,6-diol have been studied. It was found that the diyne ligand easily reacts with all these complexes to give [HOs(3)(CO)8(PR3)-[mu3, eta1:eta3:eta1)-(CH(3)-C-C=CH-CH=C-O)]] complexes (V, VI and VII, respectively) containing the "Os3C3" pentagonal pyramid cluster framework. This structural pattern is formed through the diyne cyclization, dissociation of a CO ligand and eventual coordination of the cyclized organic moiety to the osmium triangle in the [mu3, eta1:eta3:eta1) manner. In the case of the PEt(3) substituted cluster the second hydride transfer onto the organic fragment occurs to afford the nonhydride [Os(3)(CO)(8)(PR3)[mu3), eta1:eta2:eta1)-(CH(3)-CH-C=CH-CH=C-O)]] cluster, VIII, containing distorted pentagonal pyramid framework with a broken Os-C bond. Heating V, VI of VII and in hexane solutions results in formation of the regioisomers (Va, VIa and VIIa) with the phosphine ligand located at adjacent osmium atoms across the Os-Os bond bridged by the coordinated organic fragment. The most probable mechanism of the isomerization includes reversible phosphine migration between these metal centres. Solid-state structure of V, Va, VI, VIIa and VIII have been established by single crystal X-ray diffraction. A general mechanistic scheme for the diyne ligand cyclization and cluster framework transformations is suggested and discussed.  相似文献   

16.
Si(CO)(n)(+) and Si(CO)(n)(+)Ar complexes are produced via laser vaporization with a pulsed nozzle source and cooled in a supersonic beam. The ions are mass selected in a reflectron time-of-flight mass spectrometer and studied with infrared laser photodissociation spectroscopy near the free molecular CO vibration (2143 cm(-1)). Si(CO)(n)(+) complexes larger than n = 2 fragment by the loss of CO, whereas Si(CO)(n)(+)Ar complexes fragment by the loss of argon. All clusters have resonances near the free molecular CO stretch that provide distinctive patterns from which information on their structure and bonding can be obtained. The number of infrared-active bands, their frequency positions, and relative intensities indicate that larger species consist of an asymmetrically coordinated Si(CO)(2)(+) core with additional CO ligands attached via van der Waals interactions. Density functional theory computations are carried out in support of the experimental spectra.  相似文献   

17.
Reactions of Pd(PEt(3))(2)Cl(2) and Au(PPh(3))Cl in DMF with NaOH under CO atmosphere gave rise to the unique capped three-shell homopalladium Pd(145)(CO)(x)(PEt(3))(30)(x approximately 60) and two neutral Au-Pd clusters: Au(2)Pd(21)(CO)(20)(PEt(3))(10) (1) and Au(2)Pd(41)(CO)(27)(PEt(3))(15)(following article). Similar reactions with Pd(PMe(3))(2)Cl(2) being used in place of Pd(PEt(3))(2)Cl(2) afforded Au(2)Pd(21)(CO)(20)(PMe(3))(10) (2), the trimethylphosphine analogue of, and the electronically equivalent [AuPd(22)(CO)(20)(PPh(3))(4)(PMe(3))(6)](-) monoanion (3) as the [PPh(4)](+) salt. Each of these three air-sensitive 23-atom heterometallic Au-Pd clusters was obtained in low yields (7-25%); however, their geometrical similarities with the known cuboctahedral-based homopalladium Pd(23)(CO)(20)(PEt(3))(10) (4), recently obtained in good yields from Pd(10)(CO)(12)(PEt(3))(6), suggested an alternative preparative route for obtaining. This "structure-to-synthesis" approach afforded 1 in 60-70% yields from reactions of Pd(10)(CO)(12)(PEt(3))(6) and Au(PPh(3))Cl in DMF with NaOH under N(2) atmosphere. Both the compositions and atomic arrangements for 1, 2 and 3 were unambiguously established from low-temperature single-crystal CCD X-ray crystallographic determinations in accordance with their nearly identical IR carbonyl frequencies. Cluster 1 was also characterized by (31)P[(1)H] NMR, cyclic voltammetry (CV) and elemental analysis. The virtually identical Au(2)Pd(21) core-architectures of 1 and 2 closely resemble that of 4, which consists of a centered hexa(square capped)-cuboctahedral Pd(19) fragment of pseudo-O(h) symmetry that alternatively may be viewed as a centered Pd(19)nu(2)-octahedron (where nu(n) designates (n + 1) equally spaced atoms along each edge). [AuPd(22)(CO)(20)(PPh(3))(4)(PMe(3))(6)](-) (3) in the crystalline state ([PPh(4)](+) salt) consists of two crystallographically independent monoanions 3A and 3B; a superposition analysis ascertained that their geometries are essentially equivalent. A CV indicates that reversibly undergoes two one-electron reductions and two one-electron oxidations; these reversible redox processes form the basis for an integrated structural/electronic picture that is compatible with the existence of the electronically-equivalent 1-3 along with the electronically-nonequivalent 4 (with two fewer CVEs) and other closely related species.  相似文献   

18.
Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.  相似文献   

19.
Li J  Bursten BE  Zhou M  Andrews L 《Inorganic chemistry》2001,40(21):5448-5460
Laser-ablated thorium atoms have been reacted with CO molecules during condensation in excess neon. Absorptions at 617.7 and 812.2 cm(-1) are assigned to Th-C and Th-O stretching vibrations of the CThO molecule. Absorptions at 2048.6, 1353.6, and 822.5 cm(-1) are assigned to the OThCCO molecule, which is formed by CO addition to CThO and photochemical rearrangement of Th(CO)(2). The OThCCO molecule undergoes further photoinduced rearrangement to OTh(eta(3)-CCO), which is characterized by C-C, C-O, and Th-O stretching vibrations at 1810.8, 1139.2, and 831.6 cm(-1). The Th(CO)(n) (n = 1-6) complexes are formed on deposition or on annealing. Evidence is also presented for the CThO(-) and Th(CO)(2)(-) anions, which are formed by electron capture of neutral molecules. Relativistic density functional theory (DFT) calculations of the geometry structures, vibrational frequencies, and infrared intensities strongly support the experimental assignments. It is found that CThO is an unprecedented actinide-containing carbene molecule with a triplet ground state and an unusual bent structure ( angleCThO = 109 degrees ). The OThCCO molecule has a bent structure while its rearranged product OTh(eta(3)-CCO) is found to have a unique exocyclic structure with side-bonded CCO group. We also find that both Th(CO)(2) and Th(CO)(2)(-) are, surprisingly, highly bent, with the angleC-Th-C bond angle being close to 50 degrees; the unusual geometries are the result of extremely strong Th-to-CO back-bonding, which causes significant three-centered bonding among the Th atom and the two C atoms.  相似文献   

20.
Hwang IC  Seppelt K 《Inorganic chemistry》2003,42(22):7116-7122
Fluorination of [Os(3)CO(12)] in HF/SbF(5) affords [Os(CO)(4)(FSbF(5))(2)]. According to its crystal structure (orthorhombic, Pna2(1), a = 1590.3(3), b = 1036.6(1), c = 878.2(2) pm, Z = 4), the two SbF(6) units occupy cis positions in the octahedral environment around the Os atom. Fluorination of [Ir(4)(CO)(12)] in HF/SbF(5) produced three different compounds: (1) [Ir(4)(CO)(8)(mu-F)(2)(Sb(2)F(11))(2)] (tetragonal, P4n2, a = 1285.2(2), c = 952.9(1) pm, Z = 2). Here, two of the six edges of the Ir(4) tetrahedron in [Ir(4)CO(12)] are replaced by bridging fluorine atoms. (2) [fac-Ir(CO)(3)(FSbF(5))(2)HF]SbF(6).HF (orthorhombic, Pnma, a = 1250.6(1), b = 1340.7(2), c = 1092.6(2) ppm, Z = 4). The Ir(4) tetrahedron in Ir(4)(CO)(12) is completely broken down, but the facial Ir(CO)(3) configuration is retained. (3) [mer-Ir(CO)(3)F(FSbF(5))(2)] (triclinic, P1, a = 834.9(1), b = 86 4.9(1), c = 1060.0(1) pm, alpha = 69.173(4) degrees, beta = 77.139(4) degrees, gamma = 88.856(4) degrees, Z = 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号