首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron–photon coupling strength on spin-dependent heat and thermoelectric currents are presented.  相似文献   

2.
It is shown that quantum electromagnetic transitions to high orders are essential to describe the time‐dependent path of a nanoscale electron system in a Coulomb blockade regime when coupled to external leads and placed in a 3D rectangular photon cavity. The electronic system consists of two quantum dots embedded asymmetrically in a short quantum wire. The two lowest in energy spin degenerate electron states are mostly localized in each dot with only a tiny probability in the other dot. In the presence of the leads, a slow high‐order transition between the ground states of the two quantum dots is identified. The Fourier power spectrum for photon–photon correlations in the steady state shows a Fano type of resonance for the frequency of the slow transition. Full account is taken of the geometry of the multilevel electronic system, and the electron–electron Coulomb interactions together with the para‐ and diamagnetic electron–photon interactions are treated with step‐wise exact numerical diagonalization and truncation of appropriate many‐body Fock spaces. The matrix elements for all interactions are computed analytically or numerically exactly.  相似文献   

3.
The quantum effects on the plasma two-stream instability are studied by the dielectric function approach. The analysis suggests that the instability condition in a degenerate dense plasma deviates from the classical theory when the electron drift velocity is comparable to the Fermi velocity. Specifically, for a high wave vector comparable to the Fermi wave vector, a degenerate quantum plasma has larger regime of instability than predicted by the classical theory. A regime is identified, where there are unstable plasma waves with frequency 1.5 times of a normal Langmuir wave.  相似文献   

4.
A quantum theory of parametric amplification and frequency conversion of an optical image in coupled nonlinear optical processes that include one parametric amplification process at high-frequency pumping and two up-conversion processes in the same pump field is developed. The field momentum operator that takes into account the diffraction and group velocities of the waves is used to derive the quantum equations related to the spatial dynamics of the images during the interaction. An optical scheme for the amplification and conversion of a close image is considered. The mean photon number density and signal-to-noise ratio are calculated in the fixed-pump-field approximation for images at various frequencies. It has been established that the signal-to-noise ratio decreases with increasing interaction length in the amplified image and increases in the images at the generated frequencies, tending to asymptotic values for all interacting waves. The variance of the difference of the numbers of photons is calculated for various pairs of frequencies. The quantum entanglement of the optical images formed in a high-frequency pump field is shown to be converted to higher frequencies during the generation of sum frequencies. Thus, two pairs of entangled optical images are produced in the process considered.  相似文献   

5.
In the conventional scheme of generating strong mechanical squeezing by the joint effect between mechanical parametric amplification and sideband cooling, the resolved sideband condition is required so as to overcome the quantum backaction heating. In the unresolved sideband regime, to suppress the quantum backaction, a χ(2) nonlinear medium is introduced to the cavity. The result shows that the quantum backaction heating effect caused by unwanted counter-rotating term can be completely removed. Hence, the strong mechanical squeezing can be obtained even for the system far from the resolved-sideband regime.  相似文献   

6.
Cavity optomechanics represents a flexible platform for the implementation of quantum technologies, useful in particular for the realization of quantum interfaces, quantum sensors and quantum information processing. However, the dispersive, radiation–pressure interaction between the mechanical and the electromagnetic modes is typically very weak, harnessing up to now the demonstration of interesting nonlinear dynamics and quantum control at the single photon level. It has already been shown both theoretically and experimentally that if the interaction is mediated by a Josephson circuit, one can have an effective dynamics corresponding to a huge enhancement of the single-photon optomechanical coupling. Here we analyze in detail this phenomenon in the general case when the cavity mode and the mechanical mode interact via an off-resonant qubit. Using a Schrieffer–Wolff approximation treatment, we determine the regime where this tripartite hybrid system behaves as an effective cavity optomechanical system in the strong coupling regime.  相似文献   

7.
We theoretically investigate the analog of electromagnetically induced absorption and parametric amplification in a hybrid opto-electromechanical system consisting of an optical cavity and a microwave cavity coupled to a common mechanical resonator. When the two cavity modes are driven by two pump fields, a weak probe beam is applied to the optical cavity to monitor the optical response of the hybrid system, which can be effectively controlled by adjusting the frequency and power of the two pump fields. We find that the analog of electromagnetically induced absorption and parametric amplification can appear in the probe transmission spectrum when one cavity is pumped on its red sideband and another is pumped on its blue sideband. These phenomena can find potential applications in optical switching and signal amplification in the quantum information process.  相似文献   

8.
Light shining through wall experiments (in the optical as well as in the microwave regime) are a powerful tool to search for light particles coupled very weakly to photons such as axions or extra hidden sector photons. Resonant regeneration, where a resonant cavity is employed to enhance the regeneration rate of photons, is one of the most promising techniques to improve the sensitivity of the next generation of experiments. However, doubts have been voiced if such methods work at very low regeneration rates where on average the cavity contains less than one photon. In this Letter we report on a demonstration experiment using a microwave cavity driven with extremely low power, to show that resonant amplification works also in this regime. In accordance with standard quantum mechanics this is a demonstration that interference also works at the level of less than one quantum. As an additional benefit this experiment shows that thermal photons inside the cavity cause no adverse effects.  相似文献   

9.
Quantum fluctuations of the signal field are shown to induce packed arrays of cavity solitons in a degenerate optical parametric oscillator above threshold in the limit of large pump finesse relative to the signal finesse. The cavity solitons in the array are formed by locked domain walls, and lead to a highly correlated quantum structure. The effect of the quantum fluctuations is non-trivial since the arrays of cavity solitons have a far less stable than other stable solutions and disappear with decreasing pump finesse. The transition from disorder to order due to quantum noise is also discussed. Received 20 September 2002 / Received in final form 28 November 2002 Published online 11 February 2003  相似文献   

10.
Diffracted digital images are reconstructed by excitation of spatial solitons in a bulk chi((2)) crystal, in the regime of single-pass parametric amplification of the quantum noise.  相似文献   

11.
A full quantum treatment about the process of parametric down-conversion with frequency degenerate but polarization pon-degenerate in an optical parametric oscillator (OPO) cavity is presented. Using the linearized Langevin equations and spectral matrix, we calculated the squeezing spectra of the coupled mode in the output field. The squeezing as a function of driving field and detection frequency is obtained. The resuits obtained, which are compared with those found semiclassically by Reynaud et al., indicate that it is possible to generate a two-mode coherent squeezed state with large amplitude. The quantum correlation between the signal and the idler modes is also discussed. It is shown that there is an inseparable relationship between the two-mode squeezing and the intermode quantum correlation.  相似文献   

12.
Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the V-type degenerate three-level atom and single-mode cavity field is studied by utilizing complete quantum theory. Then a new scheme for teleporting N-qubit unknown atomic state via Raman-interaction of the V-type degenerate three-level atom with a single-mode cavity field is proposed, which is based upon the complete quantu...  相似文献   

13.
赵彦辉  钱琛江  唐静  孙悦  彭凯  许秀来 《物理学报》2016,65(13):134206-134206
光子晶体微腔和量子点的集成是实现量子信息处理非常具有潜力的平台之一,利用微腔和量子点的耦合可以制备纠缠光子对,实现对量子态的操控.因为光子晶体微腔具有品质因子高、模场体积小等优点,可以极大地增强光与物质之间的相互作用,从而易于实现量子态在不同物理体系之间的转换.通过单量子点和光子晶体H1微腔的耦合可以产生纠缠光子对,因为H1微腔具有简并的、模式偏振正交的基态模式.通常微腔模式的激发随着量子点在微腔中的位置变化而改变,本文用时域有限差分方法研究了偶极子光源的位置及偏振对激发光子晶体H1微腔模式的影响.结果表明:通过改变偶极子光源位置可以选择性地激发H1微腔简并模式中的一个;具有某一偏振的偶极子光源只能激发相应偏振的微腔模式;模式激发强度的大小也是由偶极子光源在微腔中的位置决定的.鉴于目前量子点在微腔中的位置尚不能精确控制,所以微腔模式受激发光源位置的影响的研究具有重要意义.  相似文献   

14.
The dynamics of a composite system containing two orthogonal degenerate whispering-gallery cavity modes coupling to a quantum dot (QD) is presented by a full quantum approach. The energy levels of the quantum dot are modeled as a V-type three-level system, which consist of the ground state, right- and left-polarized excitons. The counterclockwise mode a and the clockwise mode b are coupled with the transitions corresponding to the right- and left-polarized excitons with coupling rates gR and gL, respectively. An exact solution is proposed in a real-space approach. We majorly discuss the effects of the backscattering rate β on the spectra of the transmission and reflection in a strong coupling regime. A new insight is that one can overcome the excitons' fine structure splitting of a real QD with appropriate backscattering rate β by fine designing the cavity, which would be possible for applications to produce the degenerate entangled photon pairs in a real QD system.  相似文献   

15.
Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the V-type degenerate three-level atom and single-mode cavity field is studied by utilizing complete quantum theory. Then a new scheme for teleporting N-qubit unknown atomic state via Raman-interaction of the V-type degenerate three-level atom with a single-mode cavity field is proposed, which is based upon the complete quantum theory mentioned above.  相似文献   

16.
We study the dynamics of quantum discord between two qubits coupled collectively to a thermal reservoir. For comparison, we also consider the dynamics of quantum entanglement. It is shown that we can obtain a stable quantum discord induced by the thermal environment when the discord of the initial state is zero. The thermal environment can also induce a stable amplification of the initially prepared quantum discord for certain X-type states. It is very valuable that the quantum discord is more resistant against the thermal environment than quantum entanglement. And, we have demonstrated that the sudden death of discord in a Markovian regime is impossible even at high temperature. It provides us a feasible way to create and protect quantum correlation in the case of a high-temperature thermal environment for various physical system such as trapped ions, quantum dots or Josephson junctions.  相似文献   

17.
We investigate the ground-state properties of an attractively interacting degenerate Fermi gas coupling with a high-finesse optical cavity. We predict a new mixed phase with both the superfluid and superradiant properties for the intermediate fermion-fermion interaction and fermion-photon coupling strengths. Moreover, in this mixed phase a relatively large ratio of the scaled polarization to the dimensionless mean-field gap, which is in contrast to that in the conventional superfluid regime can be obtained. We also figure out rich phase diagrams depending crucially on the atomic resonant frequency (effective Zeeman field) and address briefly the experimental detection of our predicted quantum phases.  相似文献   

18.
赵超樱  谭维翰 《物理学报》2005,54(10):4526-4531
导出在P表象中含时的线性驱动简并参量放大Fokker-Planck方程,并求其解.在阈值以下或阈值附近,含时驱动Fokker-Planck方程的解与线性理论或阈值附近的微扰理论预言的基本相符.在阈值以上,含时驱动Fokker-Planck方程解的短期行为也与线性近似解相近,但当τ增大后的长期行为完全区别于线性理论的结果. 关键词: 含时的线性驱动简并参量放大 Fokker-Planck方程 量子起伏  相似文献   

19.
The master equation is derived for an atom and a single high-Q cavity mode interacting with the bath modes produced by a two-mode broadband source based on two degenerate optical parametric oscillators. The relaxation superoperator, found in the resonant and dispersive limits, contains new terms describing correlations between the atom and the cavity mode. Collective coherent states are introduced to show that squeezed states of the atom-cavity subsystem are generated via interaction with an entangled environment. It is shown that a correlated initial state of the atom and the cavity mode manifests itself in two cavity QED phenomena: spontaneous atomic emission in the strong-coupling regime and population inversion in the Jaynes-Cummings model.  相似文献   

20.
A single quantum dot embedded in a photonic crystal defect cavity allows for the investigation of cavity quantum electrodynamics effects in a solid-state environment. We present experiments demonstrating the quantum nature of this fundamental system in the strong coupling regime. Photon correlation measurements are used to characterize the fundamental properties of this unique system: through these experiments, we identify an unexpected, efficient sustaining mechanism that ensures strong cavity emission and is quantum correlated with the exciton resonance, even when all the quantum dot resonances are far detuned from the cavity mode. To cite this article: A. Badolato et al., C. R. Physique 9 (2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号