首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
A solution of zirconium propoxide stabilized by methoxyethanol is mixed with silicon ethoxide in ethanol and hydrolyzed by small amounts of neutral, basified or acidified water. The obtained silica-zirconia gel is dried in supercritical conditions, yielding an aerogel. The modifications of the aerogel porous texture as a function of chemical composition and thermal treatment are investigated using adsorption-desorption isotherms analysis, mercury porosimetry, electron-microscopy and X-ray diffraction.  相似文献   

2.
Properties relating to porosity of solids (fractal dimensions, surface roughness parameters) were evaluated from atomic force microscopy (AFM) and nitrogen adsorption-desorption isotherms measured at 77 K for selected high-temperature [(RE) Ba2Cu3O7−x, RE=Y, Sm] superconductors. Adsorption capacity, specific surface area, fractal dimensions were determined from adsorption-desorption isotherms. The adsorption isotherms of all samples were S-shaped and belong to type II according to the IUPAC classification. A linear relationship was demonstrated between the fractal coefficients calculated by using the two methods and values of adsorption capacity of monolayer.  相似文献   

3.
The internal surface structures of silica aerogel particles synthesized using different catalysts in emulsion and microemulsion media have been investigated by means of N(2) adsorption and desorption isotherms. Surface fractal dimensions have been computed using different methods: Frankel-Halsey-Hill plots of the adsorption isotherms, the thermodynamic fractal isotherm equation, and a modification of the thermodynamic fractal isotherm equation. Silica aerogels synthesized in emulsion media with an acidic catalyst have a high specific surface area without micropores and show two separate ranges of scales where the surface fractal dimensions are different and constant. Silica aerogels synthesized in emulsion media with a basic catalyst have a moderate specific surface area with a high percentage of micropores and show constant surface fractal dimensions over a larger range. Silica aerogels synthesized in microemulsion media with a basic catalyst have a low specific surface area with a moderate percentage of micropores and show a moderate range of scales over which the surface fractal dimension is constant. Analyses by both the thermodynamic and modified thermodynamic methods give similar ranges of the surface fractal dimensions of the silica particles. Copyright 2000 Academic Press.  相似文献   

4.
The powder of polyaluminum chloride-humic acid (PACl-HA) flocs was prepared by cryofixation-vacuum-freeze-drying method. The FTIR spectra show that some characteristic functional groups in polyaluminum chloride (PACl), humic acid (HA), and kaolin still existed in the dried flocs. X-ray diffractometry (XRD) patterns indicate that these flocs are amorphous. Nitrogen adsorption-desorption isotherms were obtained for different samples of the dried PACl-HA flocs. The BET specific surface area, BJH cumulative absorbed volume and BJH desorption average pore diameter of them were determined. The peak values of 8.4-11.2 nm (pore diameter) for pore size distribution (PSD) curves indicate that the pores of the dried flocs are mostly mesopores. The surface fractal dimensions D(s) and the corresponding fractal scales determined from both SEM images and nitrogen adsorption-desorption data sets reveal the multi-scale surface fractal properties of the dried PACl-HA flocs, which exhibited two distinct fractal regimes: a regime of low fractal dimensions (2.07-2.26) at higher scales (23-387 nm), mainly belonging to exterior surface scales, and a higher fractal dimensions (2.24-2.37) at lower scales (0.80-7.81 nm), falling in pore surface scales. Both HA addition and kaolin reduction in dried floc can decrease the irregularity and roughness of external surface. However, for the irregularity and roughness of pore surface, the addition of HA or kaolin in dried floc can increase them. Furthermore, some difference was found between the pore surface fractal dimensions D(s) calculated from nitrogen adsorption and desorption data. The pore surface D(s) values calculated through thermodynamic model were much greater than three.  相似文献   

5.
刘群  张志华  刘源  王晓栋  沈军 《化学通报》2020,83(6):552-556,507
以TEOS为前驱体,乙醇为溶剂,氢氟酸为催化剂,一步法合成了常规二氧化硅气凝胶。经乙醇超临界干燥后,通过SEM,FTIR和N2吸脱附分析仪等仪器对二氧化硅气凝胶样品进行表征,以更好地了解吸附机理与性质的关系。结果表明,样品的比表面积高达519 m2/g,孔体积为1.9 cm3/g,平均孔径为15.15 nm,是一种优良的吸附材料。制备的样品用作测试甲苯、对二甲苯和苯三种挥发性有机化合物的吸附效果。结果表明,二氧化硅气凝胶对三种污染物都具有很高的吸附量,其高吸附能力归因于气凝胶的三维纳米网络结构。样品对甲苯,对二甲苯和苯的最大吸附能力分别为1422.8 mg/g,707.4 mg/g和1299.4 mg/g。综上所述,二氧化硅气凝胶是一种很有前景的处理挥发性有机化合物的吸附剂,具有优异的吸附性能。  相似文献   

6.
Silica or glass particles are introduced in a poly(dimethylsiloxane) (PDMS) matrix for various applications. A particular feature of these systems is that PDMS adsorbs on the surface of the dispersed particles, thus rendering them more hydrophobic with time. The mechanism of this process of in situ hydrophobization is still poorly understood. The major aims of the present study are (1) to quantify the rate of surface hydrophobization by PDMS and, on this basis, to discuss the mechanism of the process; (2) to compare the contact angles of surfaces that are hydrophobized by different procedures and are placed in contact with different fluid interfaces-PDMS-water, hexadecane-water, and air-water; and (3) to check how the type of surfactant affects the contact angles, viz., the effective hydrophobicity of the surface. We present experimental results for the kinetics of hydrophobization of glass surfaces, which are characterized by measuring the three-phase contact angle of glass-surfactant solution-PDMS. The data reveal two consecutive stages in the hydrophobization process: The first stage is relatively fast and the contact angle increases from 0 degrees to about 90 degrees within several minutes. This stage is explained with the physical adsorption of the PDMS chains, as a result of hydrogen-bond formation with the surface silanol groups. The second stage is much slower and hours or days are required at room temperature to reach the final contact angle (typically, 150-160 degrees). This stage is explained as grafting of the PDMS molecules on the surface by chemical reaction with the surface silanol groups. If the glass surface had been pretreated by hexamethyldisilazane (HMDS), so that CH(3) groups had blocked most of the surface silanol groups, the first stage in the hydrophobization process is almost missing-the contact angle slowly changes at room temperature from about 90 degrees up to 120 degrees. The experiments aimed to compare several hydrophobization procedures showed that PDMS ensures larger contact angle (more hydrophobic surface) than grafted alkyl chains. The contact angles at the PDMS-water and hexadecane-water interfaces were found to be very similar to each other, and much larger than that at the air-water interface. Interestingly, we found that the ionic surfactants practically do not affect the contact angle of PDMS-hydrophobized surface, whereas the nonionic surfactants reduce this angle. Similar trends are expected with silica surfaces, as well.  相似文献   

7.
Cushioning and antibacterial packaging are the requirements of the storage and transportation of fruits and vegetables, which are essential for reducing the irreversible quality loss during the process. Herein, the composite of carboxymethyl nanocellulose, glycerin, and acrylamide derivatives acted as the shell and chitosan/AgNPs were immobilized in the core by using coaxial 3D-printing technology. Thus, the 3D-printed cushioning–antibacterial dual-function packaging aerogel with a shell–core structure (CNGA/C–AgNPs) was obtained. The CNGA/C–AgNPs packaging aerogel had good cushioning and resilience performance, and the average compression resilience rate was more than 90%. Although AgNPs was slowly released, CNGA/C–AgNPs packaging aerogel had an obvious antibacterial effect on E. coli and S. aureus. Moreover, the CNGA/C–AgNPs packaging aerogel was biodegradable. Due to the customization capabilities of 3D-printing technology, the prepared packaging aerogel can be adapted to more application scenarios by accurately designing and regulating the microstructure of aerogels, which provides a new idea for the development of food intelligent packaging.  相似文献   

8.
The porous structure of MgB2 has been investigated using atomic force microscopy (AFM) and sorption techniques. The fractal dimension and surface roughness parameters were evaluated from (AFM) and nitrogen adsorption?Cdesorption isotherms measured at ?196?°C for MgB2 sample. Adsorption capacity, specific surface area, and fractal dimensions were determined from adsorption?Cdesorption isotherms. The sorption isotherms of MgB2 samples were S-shaped and belong to type II according to the IUPAC classification. The results of fractal dimensions of MgB2 surface determined on the basis sorptometry and AFM data are compared.  相似文献   

9.
Fractal analysis of hydroxyapatite from nitrogen isotherms   总被引:10,自引:0,他引:10  
Samples of calcium hydroxyapatite, CaHap, were prepared via a wet method and subjected to thermal treatment in air in the temperature range 100-900 degrees C. Nitrogen adsorption-desorption isotherms were obtained on different samples, and their data points were used to analyze the fractal properties of the obtained solids. Both FHH and Neimark's equations were used for such purpose, and the agreement or disagreements between obtained results on using both equations are discussed. Considering the appropriate values of the obtained surface fractal dimensions D, it was concluded that an appreciable defractalization of the prepared hydroxyapatite is only noted upon calcinations at 900 degrees C. Below this temperature the loss in surface area and pore volume result from simultaneous bulk and surface mass transport, which conserve the initial surface roughness and average pore radius. Calcination at 900 degrees C caused sintering to proceed via bulk mass transport, with a consequent pore widening and a decrease in surface roughness.  相似文献   

10.
The structure of the particles of nanocrystalline silicon synthesized in argon plasma with added oxygen is studied. An amorphous shell composed of silicon oxide is formed on the surface of silicon nanoparticles. The particles form clusters with a fractal structure. The adsorption of nitrogen on a powder of nanocrystalline silicon at 77 K is studied, and adsorption isotherms obtained for nanocrystalline silicon and nonporous silica adsorbents with identical specific surface areas are compared. The values of surface fractal dimension of powdered nanocrystalline silicon are calculated using the Frenkel-Halsey-Hill equation for multilayer adsorption under the dominant contribution of van der Waals or capillary forces. It is shown that surface fractal dimension is a structure-sensitive parameter characterizing both the morphology of clusters and the structure (roughness) of the surface of particles and their aggregates.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 541–547.Original Russian Text Copyright © 2005 by Tutorskii, Belogorokhov, Ishchenko, Storozhenko.  相似文献   

11.
This work is devoted to the application of hydrophobic silica based aerogels and xerogels for the removal of three toxic organic compounds from aqueous solutions. These materials were tested and characterized regarding their morphology, particle size distribution, surface area and porous structure. The equilibrium tests were carried out at different adsorbate concentrations and the experimental data were correlated by means of Langmuir and Freundlich isotherms. The equilibrium data were well described by Langmuir and Freundlich in most cases. The maximum adsorption capacity by Langmuir model was observed for the adsorption of benzene onto aerogel (192.31 mg/g), though the most promising results were obtained for toluene adsorption due to the greater adsorption energy involved. Comparing these results with other reported results, the hydrophobic silica based aerogels/xerogels were found to exhibit a remarkable performance for the removal of benzene and toluene. In addition, the regeneration of previously saturated aerogel/toluene was also investigated by using an ozonation process. The adsorption/regeneration tests with ozone oxidation showed that the aerogel might be regenerated, nevertheless the materials lost their hydrophobicity and thus different methods should be evaluated in forthcoming investigations.  相似文献   

12.
A comparative study of adsorption-desorption isotherms of linoleic and linolenic acids from solutions in carbon tetrachloride on surfaces of manganese and copper ferrites is performed by means of equilibrium adsorption. Adsorption isotherms of fatty acids are described in terms of the theory of volume filling of micropores, and the values of the limiting adsorption, the characteristic adsorption energy, and the pore space volume are calculated. It is established that the limiting adsorption values of linoleic and linolenic acids from solutions in carbon tetrachloride on a copper ferrite surface are higher than on a manganese ferrite surface. It is shown that the adsorption-desorption isotherms have a hysteresis loop.  相似文献   

13.
采用溶胶-凝胶法和常压干燥法以N,N′-二甲基甲酰胺(DMF)作为干燥控制化学添加剂制备了低密度石英纤维增强Al2O3气凝胶复合材料.通过氮气吸附-脱附实验比较研究了石英纤维对氧化铝气凝胶孔结构参数的影响;采用X射线衍射技术表征了在升温过程中石英纤维/Al2O3气凝胶复合材料的相结构变化;利用扫描电子显微镜和透射电子显微镜观察了Al2O3气凝胶基体及其石英纤维复合材料的微观形貌;初步探讨了DMF对Al2O3气凝胶形貌和密度的影响.研究结果表明石英纤维/Al2O3气凝胶复合材料成块性好,纤维与气凝胶基体结合紧密,石英纤维提高了Al2O3相转变温度,适量的DMF有利于形成均匀凝胶网络结构,减小干燥收缩压力.  相似文献   

14.
Programmed thermodesorption of n-butanol from Na-, La-montmorillonite, natural and commercial zeolite samples in quasi-isothermal conditions made. The new method of fractal dimension calculations from thermogravimetry data has been presented. On the basis of nitrogen adsorption-desorption isotherms from sorptometry and mercury porosimetry data the fractal dimensions of montmorillonites were calculated. The results from above independent and separated techniques were compared and good correlation were obtained. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Porous silica-alumina xerogels are synthesized through two methods, which differ by the aluminium precursor: aluminium tri-secbutoxide and aluminium nitrate nonahydrate. The silicium precursor is tetraethylorthosilicate. The porous texture is studied by nitrogen adsorption-desorption isotherms. It is found that the porous texture mainly depends on one parameter for each preparation method: hydrolysis catalyst in one case and aluminium content in the other case.  相似文献   

16.
The equilibrium adsorption method was used to comparatively study the adsorption-desorption isotherms of oleic acid on the surfaces of manganese and copper ferrites from a solution in carbon tetrachloride. The adsorption isotherms of the fatty acid were described in terms of the theory of volume filling of micropores. The theory was used to calculate the limiting adsorption values, characteristic energy, and porous space volumes. The isotherm of oleic acid adsorption on the surface of manganese ferrite from a solution in carbon tetrachloride was similar to the isotherms of fatty acid adsorption from solutions in heptane, whereas the isotherm of adsorption on the surface of copper ferrite was similar to the isotherms of fatty acid adsorption from hexane. The limiting adsorption from carbon tetrachloride was higher on the surface of manganese ferrite than on the surface of copper ferrite. The adsorption-desorption isotherms contained hysteresis loops.  相似文献   

17.
Porous anatase is attractive because of its notable photo-electronic properties. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical CO2 at 60°C and the solvent was extracted (aerogel). Mesoporous TiO2 consisting of anatase nano-particles, about 5 nm in diameter, have been obtained. Thermal evolution of the microstructure of the aerogel was evaluated by TGA-DTA, N2 adsorption, TEM and XRD, and discussed in comparison with that of the corresponding xerogel. The diffraction peaks of anatase were found for the as-extracted gel while the xerogel dried at 90°C was amorphous. After calcination at 600°C, the average pore size of the aerogel, about 20 nm in diameter, was 4 times larger than that of the xerogel, and the pore volume, about 0.35 cm3 g−1, and the specific surface area, about 60 m2 g−1, were 2 times larger than those of the xerogel. XRD peaks of rutile have been found after calcination at 600°C. The particle sizes of anatase and rutile are about 13 and 25 nm in diameter, respectively. The surface morphology of TiO2 nano-particles has been discussed in terms of their surface fractal dimensions estimated from the N2 gas adsorption isotherms.  相似文献   

18.
We describe a method for the synthesis of multigram amounts of silica nanoparticles which are controllably hydrophobized to different extents using a room temperature vapor phase silanization process. The extent of hydrophobization of the particles can be adjusted by changing the amount of dichlorodimethylsilane reagent used in the reaction. The method produces particles with good uniformity of surface coating; the silane coating varies from monolayer coverage at low extents of hydrophobization to approximately trilayer at high extents of hydrophobization. Acid-base titration using conductivity detection was used to characterize the extent of hydrophobization which is expressed as the percent of surface silanol groups remaining after silanization. Particles with %SiOH ranging from 100% (most hydrophilic) to 20% (most hydrophobic) were hand shaken with water/methanol mixtures and produced either a particle dispersion, foam, climbing films, or liquid marbles. The type of colloidal structure produced is discussed in terms of the liquid-air-particle contact angle and the energy of adsorption of the particles to the liquid-air surface.  相似文献   

19.
Microporous silica gels were prepared in the pH range of 3–4 using sodium silicate as a silica source. Surface polarity of these gels was modified by grafting hydrophobic groups into the silica gel matrix with the help of hydrophilic solvents (acetone, acetonitrile, ethanol and methanol) and alkoxysilane compounds containing nonhydrolyzable alkyl groups. The porous framework and hydrophobicity of the silica gels were evaluated using nitrogen adsorption/desorption and water adsorption measurement techniques. All the measured isotherms were found to be type I which is indicative of microporosity. The surface area and microporosity of these samples were estimated by analyzing the measured nitrogen adsorption/desorption data using BET, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The micropore size distribution was determined from their nitrogen adsorption isotherms using the slit-pore model of the Horvath-Kawazoe equation. Silica gels with high surface area (over 500 m2/g) as well as high microporosity (over 0.2 cc/g) were obtained at gelation pH of 3.50 from the water-solvent system.  相似文献   

20.
We report a simple novel procedure to prepare hydrophobic cotton textiles by admicellar polymerization. By in situ introducing fluoropolymer on cotton fibers to generate a dual-size surface roughness, followed by hydrophobization with a little amount of fluoromonomer Octafluoropentamethyl methacrylate (OFPM) with short time, normally hydrophilic cotton has been easily turned into hydrophobic. Hydrophobic cotton textile exhibits a static water contact angle of 124° for a 10?µl droplet. When an octa fluoroalkyl chain is introduced to the cotton surface, the originally smooth surface changed immediately to rough surface which is the key factor for hydrophobicity like lotus leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号