首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the present study, environmentally benign silver nanoparticles were synthesized using commercially purchased shrimp-shell chitosan as a capping agent. The synthesized chitosan-silver nanoparticles (Ch-AgNPs) were physico-chemically characterized by UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) along with energy dispersive X-ray analysis (EDX), DLS and Zeta potential analysis. Ch-Ag NPs were crystalline, uniformly dispersed, and spherically shaped, with particle size between 8 and 48 nm. The average size of Ch-AgNPs was 21 nm. In-vitro anti-biofilm activity of Ch-AgNPs was tested against wound infection-causing pathogenic bacteria such as Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative). Ch-AgNPs displayed anti-biofilm activity in a dose-dependent manner. Light and confocal-laser scanning microscopy confirmed the significant inhibition of biofilm growth of S. aureus (85%) and P. aeruginosa (95%) at 100 μg mL−1 of Ch-AgNPs. Moreover, Ch-AgNPs promoted wound healing by increasing the migration of RAW 264.7 murine macrophages cells at 75 and 100 μg mL−1after 24 h. In addition, in vitro cytotoxicity of Ch-AgNPs against MCF 7 (human breast cancer) cells, depicted the greater inhibition of proliferation of cells (64%) at 100 μg mL−1.  相似文献   

3.
Target biomolecule-immobilized magnetic beads could be used as a powerful tool for screening active compounds present in natural products. Low damage rates of the target proteins, associated with the availability of diverse automated online approaches for analysis, make it a valuable tool for affinity studies. RAW264.7 cells (a kind of murine macrophage cell line) were used in this study. These cellular membranes were immobilized onto the surface of MBs and were used for screening the active compounds of Polygonatum sibiricum. Combining this technique with HPLC led to the identification of an active compound and its biological activity was confirmed. This is the first report establishing the use of RAW264.7 cellular membrane-coated magnetic bead fishing followed by HPLC analysis for screening active compounds from natural products.  相似文献   

4.
An alkali-extracted polysaccharide (PCAPS1) was isolated and purified from the Poria cocos. Our results proved that PCAPS1 was a neutral polysaccharide with a molecular weight of 11.5 kDa. The monosaccharide composition, methylation and NMR analysis results displayed that the polysaccharide was mostly comprised of β-1,3-glucan with 1,4 and 1,6 branches. The Immune activity and mechanism of PCAPS1 were evaluated in RAW264.7 cells. The enzyme-linked immunosorbent assay (ELISA) analysis revealed that PCAPS1 increased the tumor necrosis factor-α (TNF-α) secretion. RNA-sequencing data analysis suggested that PCAPS1 activated macrophages by the classic NF-κB pathway. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis confirmed that PCAPS1 enhanced mRNA expression levels of TNF-α and nuclear factor κB (NF-κB) in RAW264.7 cells. Simultaneously, the fluorescence nuclear transport experiment showed that PCAPS1 activated RAW264.7 cells by inducing the NF-κB p65 translocation. Our results indicated that PCAPS1-induced TNF-α expression was mediated via the NF-κB signaling pathway.  相似文献   

5.
Current anti-gastric ulcer agents have side effects, despite the progression and expansion of advances in treatment. This study aimed to investigate the gastroprotective mechanisms of Pithecellobium jiringa ethanol extract against ethanol-induced gastric mucosal ulcers in rats. For this purpose, Sprague Dawley rats were randomly divided into five groups: Group 1 (normal control) rats were orally administered with vehicle (carboxymethyl cellulose), Group 2 (ulcer control) rats were also orally administered with vehicle. Group 3 (positive control) rats were orally administered with 20 mg/kg omeprazole, Groups 4 and 5 (experimental groups) received ethanol extract of Pithecellobium jiringa ethanol extract at a concentration of 250 and 500 mg/kg, respectively. Sixty minutes later, vehicle was given orally to the normal control group, and absolute ethanol was given orally to the ulcer control, positive control and experimental groups to generate gastric mucosal injury. The rats were sacrificed an hour later. The effect of oral administration of plant extract on ethanol-induced gastric mucosal injury was studied grossly and histology. The level of lipid peroxidation (malondialdehyde-MDA), superoxide dismutase (SOD) and gastric wall mucus were measured from gastric mucosal homogenate. The ulcer control group exhibited severe gastric mucosal injury, and this finding was also confirmed by histology of gastric mucosa which showed severe damage to the gastric mucosa with edema and leucocyte infiltration of the submucosal layer. Pre-treatment with plant extract significantly reduced the formation of ethanol-induced gastric lesions, and gastric wall mucus was significantly preserved. The study also indicated a significant increase in SOD activity in gastric mucosal homogenate, whereas a significant decrease in MDA was observed. Acute toxicity tests did not show any signs of toxicity and mortality up to 5 g/kg. The ulcer protective effect of this plant may possibly be due to its preservation of gastric wall mucus along with increased SOD activity and reduction of oxidative stress (MDA). The extract is non-toxic, even at relatively high concentrations.  相似文献   

6.
Four new gallate derivatives—ornusgallate A, ent-cornusgallate A, cornusgallate B and C (1a, 1b, 2, 3)—were isolated from the wine-processed fruit of Cornus officinalis. Among them, 1a and 1b are new natural compounds with novel skeletons. Their chemical structures were elucidated by comprehensive spectroscopy methods including NMR, IR, HRESIMS, UV, ECD spectra and single-crystal X-ray diffraction analysis. The in vitro anti-inflammatory activities of all compounds were assayed in RAW 264.7 cells by assessing LPS-induced NO production. As the result, all compounds exhibited anti-inflammatory activities at attested concentrations. Among the tested compounds, compound 2 exhibited the strongest anti- inflammatory activity.  相似文献   

7.
In vitro assays of phagocytic activity showed that the peptide Pin2[G] stimulates phagocytosis in BMDM cells from 0.15 to 1.25 μg/mL, and in RAW 264.7 cells at 0.31 μg/mL. In the same way, the peptide FA1 induced phagocytosis in BMDM cells from 1.17 to 4.69 μg/mL and in RAW 264.7 cells at 150 μg/mL. Cytokine profiles of uninfected RAW 264.7 showed that Pin2[G] increased liberation TNF (from 1.25 to 10 μg/mL) and MCP-1 (10 μg/mL), and FA1 also increased the release of TNF (from 18.75 to 75 μg/mL) but did not increase the liberation of MCP-1. In RAW 264.7 macrophages infected with Salmonella enterica serovar Typhimurium, the expression of TNF increases with Pin2[G] (1.25–10 μg/mL) or FA1 (18.75–75 μg/mL). In these cells, FA1 also increases the expression of IL-12p70, IL-10 and IFN-γ when applied at concentrations of 37.5, 75 and 150 μg/mL, respectively. On the other hand, stimulation with 1.25 and 10 μg/mL of Pin2[G] promotes the expression of MCP-1 and IL-12p70, respectively. Finally, peptides treatment did not resolve murine gastric infection, but improves their physical condition. Cytokine profiles showed that FA1 reduces IFN-γ and MCP-1 but increases IL-10, while Pin2[G] reduces IFN-γ but increases the liberation of IL-6 and IL-12p70. This data suggests a promising activity of FA1 and Pin2[G] as immunomodulators of gastric infections in S. Typhimurium.  相似文献   

8.
Chloranthus oldhamii Solms (CO) is a folk medicine for treating infection and arthritis pain but its pharmacological activity and bioactive compounds remain mostly uncharacterized. In this study, the anti-inflammatory compounds of C. oldhamii were identified using an LPS-stimulated, NF-κB-responsive RAW 264.7 macrophage reporter line. Three diterpenoid compounds, 3α-hydroxy-ent-abieta-8,11,13-triene (CO-9), 3α, 7β-dihydroxy-ent-abieta-8,11,13-triene (CO-10), and decandrin B (CO-15) were found to inhibit NF-κB activity at nontoxic concentrations. Moreover, CO-9 and CO-10 suppressed the expression of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells. The inhibitory effect of CO-9 on TNF-α and IL-6 expression was further demonstrated using LPS-treated bone marrow-derived macrophages. Furthermore, CO-9, CO-10, and CO-15 suppressed LPS-triggered COX-2 expression and downstream PGE2 production in RAW 264.7 cells. CO-9 and CO-10 also reduced LPS-triggered iNOS expression and nitrogen oxide production in RAW 264.7 cells. The anti-inflammatory mechanism of the most effective compound, CO-9, was further investigated. CO-9 attenuated LPS-induced NF-κB activation by reducing the phosphorylation of IKKα/β (Ser176/180), IκBα (Ser32), and p65 (Ser534). Conversely, CO-9 did not affect the LPS-induced activation of MAPK signaling pathways. In summary, this study revealed new anti-inflammatory diterpenoid compounds from C. oldhamii and demonstrated that the IKK-mediated NK-κB pathway is the major target of these compounds.  相似文献   

9.
Barringtonia augusta methanol extract (Ba-ME) is a folk medicine found in the wetlands of Thailand that acts through an anti-inflammatory mechanism that is not understood fully. Here, we examine how the methanol extract of Barringtonia augusta (B. augusta) can suppress the activator protein 1 (AP-1) signaling pathway and study the activities of Ba-ME in the lipopolysaccharide (LPS)-treated RAW264.7 macrophage cell line and an LPS-induced peritonitis mouse model. Non-toxic concentrations of Ba-ME downregulated the mRNA expression of cytokines, such as cyclooxygenase and chemokine ligand 12, in LPS-stimulated RAW264.7 cells. Transfection experiments with the AP-1-Luc construct, HEK293T cells, and luciferase assays were used to assess whether Ba-ME suppressed the AP-1 functional activation. A Western blot assay confirmed that C-Jun N-terminal kinase is a direct pharmacological target of Ba-ME action. The anti-inflammatory effect of Ba-ME, which functions by β-activated kinase 1 (TAK1) inhibition, was confirmed by using an overexpression strategy and a cellular thermal shift assay. In vivo experiments in a mouse model of LPS-induced peritonitis showed the anti-inflammatory effect of Ba-ME on LPS-stimulated macrophages and acute inflammatory mouse models. We conclude that Ba-ME is a promising anti-inflammatory drug targeting TAK1 in the AP-1 pathway.  相似文献   

10.
beta-Carotene has shown antioxidant and anti-inflammatory activities; however, its molecular mechanism has not been clearly defined. We examined in vitro and in vivo regulatory function of beta-carotene on the production of nitric oxide (NO) and PGE(2) as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, TNF-alpha, and IL-1beta. beta-Carotene inhibited the expression and production of these inflammatory mediators in both LPS-stimulated RAW264.7 cells and primary macrophages in a dose-dependent fashion as well as in LPS-administrated mice. Furthermore, this compound suppressed NF-kappaB activation and iNOS promoter activity in RAW264.7 cells stimulated with LPS. beta-Carotene blocked nuclear translocation of NF-kappaB p65 subunit, which correlated with its inhibitory effect on IkappaBalpha phosphorylation and degradation. This compound directly blocked the intracellular accumulation of reactive oxygen species in RAW264.7 cells stimulated with LPS as both the NADPH oxidase inhibitor diphenylene iodonium and antioxidant pyrrolidine dithiocarbamate did. The inhibition of NADPH oxidase also inhibited NO production, iNOS expression, and iNOS promoter activity. These results suggest that beta-carotene possesses anti-inflammatory activity by functioning as a potential inhibitor for redox-based NF-kappaB activation, probably due to its antioxidant activity.  相似文献   

11.
Inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) have been known to be involved in various pathophysiological processes such as inflammation. This study was performed to determine the regulatory function of superoxide dismutase (SOD) on the LPS-induced expression of iNOS, and COX-2 in RAW 264.7 cells. When a cell-permeable SOD, Tat-SOD, was added to the culture medium of RAW 264.7 cells, it rapidly entered the cells in a dose-dependent manner. Treatment of RAW 264.7 cells with Tat-SOD led to decrease in LPS-induced ROS generation. Pretreatment with Tat-SOD significantly inhibited LPS-induced expression of iNOS and NO production but had no effect on the expression of COX-2 and PGE2 production in RAW 264.7 cells. Tat-SOD inhibited LPS-induced NF-κB DNA binding activity, IκBα degradation and activation of MAP kinases. These data suggest that SOD differentially regulate expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells.  相似文献   

12.
A novel pyrrolizine alkaloid, 5-(furan-3-carbonyl)-2,3-dihydro-1H-pyrrolizine-7-carboxylic acid, was isolated from the peels of Punica granatum. Its structure was elucidated on the basis of 1D- and 2D-NMR and HR-ESI-MS spectra and then confirmed by X-ray diffraction. It represents a new type of natural pyrrolizine alkaloid, named, punicagranine (1). 1 showed inhibition of nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. To our knowledge, the pyrrolizine alkaloid skeleton was reported in natural products for the first time.  相似文献   

13.
Three pairs of new enantiomeric adenine alkaloids, (+)/(?)-liguadenines A–C [(+)/(?)-13], were isolated from the rhizome of Ligusticum chuanxiong Hort. The structures and absolute configurations of these compounds were determined using spectroscopic data, single-crystal X-ray diffraction, and electronic circular dichroism analyses. To the best of our knowledge, compounds (+)-1 and (?)-1 are the first hybrid phthalide–adenines to be ever reported. The linkage between the phthalide and adenine units in these compounds forms a rare 5-oxa-1-azaspiro[3,4]octane moiety. Analyses of the anti-inflammatory activities of the isolated compounds show that (+)/(?)-1 and (+)-3 exhibit significant inhibitory activity against LPS-induced TNF-α and IL-6 production in RAW264.7 cells. RT-qPCR analysis confirms that the most active compound, (+)-3, exerts anti-inflammatory activity by downregulating the mRNA expressions of TNF-α and IL-6 in the cells.  相似文献   

14.
《中国化学快报》2020,31(6):1406-1409
Spirobisnaphthalenes comprise a relatively rare family of natural products that are normally isolated from fungi and occasionally from plants.Here we reported the discovery of seven new preussomerintype spirobisnaphthalenes,preussomerins YT1-YT7(1-7),and seven known ones(8-14),from the endophytic fungus Edenia gomezpompae,enriching the structural diversity of this family of natural products.Their structures were established by 1 D and 2 D NMR spectroscopy,HRESIMS analysis and comparison with previously reported compounds,with the absolute configurations of compounds 1 and2 being further confirmed by single-crystal X-ray diffraction using Cu Ka radiation.The antiinflammatory activities of all isolates were assessed by measuring the production of NO in LPS-induced RAW2 64.7 macrophage cells.Among them,compounds 8 and 13 exhibited potent inhibitory activities on the production of NO,with IC_(50) values of 2.61 and 1.32 μmol/L,respectively.  相似文献   

15.
In this work, a series of novel 1,2,4-triazine-chalcone hybrids were designed through the molecular hybridization strategy, synthesized by two step chlorinations and further aldol condensation and evaluated their antiproliferative activity against MGC-803, HCT-116, PC-3, EC-109 and A549 cells. Compound 9l displayed significant antiproliferative activity against MGC-803, HCT-116, PC-3, EC-109 and A549 cell lines with IC50 values of 0.41, 0.43, 0.61, 0.78 and 0.52 μM, respectively. Subsequent mechanistic investigations suggested that compound 9l induced the generation of ROS and inhibited the activation of the ERK pathway. Compound 9l induced extrinsic cell apoptosis by up-regulating DR5 dependent on the generation of ROS, while up-regulation of DR5 caused by compound 9l relied on the inhibition of ERK. Thus, compound 9l inhibited the gastric cancer cells via an axis of ROS-ERK-DR5 in vitro. Compound 9l also showed potent activity on cell proliferation inhibition, and was effective in suppressing the growth of MGC-803 xenograft tumor in nude mice without obvious toxicity. Therefore, compound 9l is to be reported as anti-gastric cancer agent in vitro and in vivo via an axis of ROS-ERK-DR5.  相似文献   

16.
Black rice is a type of rice in the Oryza sativa L. species. There are numerous reports regarding the pharmacological actions of black rice bran, but scientific evidence on its gastroprotection is limited. This study aimed to evaluate the gastroprotective activities of black rice bran ethanol extract (BRB) from the Thai black rice variety Hom Nil (O. sativa L. indica) as well as its mechanisms of action, acute oral toxicity in rats, and phytochemical screening. Rat models of gastric ulcers induced by acidified ethanol, indomethacin, and restraint water immersion stress were used. After pretreatment with 200, 400, and 800 mg/kg of BRB in test groups, BRB at 800 mg/kg significantly inhibited the formation of gastric ulcers in all gastric ulcer models, and this inhibition seemed to be dose dependent in an indomethacin-induced gastric ulcer model. BRB could not normalize the amount of gastric wall mucus, reduce gastric volume and total acidity, or increase gastric pH. Although BRB could not increase NO levels in gastric tissue, the tissue MDA levels could be normalized with DPPH radical scavenging activity. These results confirm the gastroprotective activities of BRB with a possible mechanism of action via antioxidant activity. The major phytochemical components of BRB comprise carotenoid derivatives with the presence of phenolic compounds. These components may be responsible for the gastroprotective activities of BRB. The 2000 mg/kg dose of oral BRB showed no acute toxicity in rats and confirmed, in part, the safe uses of BRB.  相似文献   

17.
Bisphenol A (BPA) is a typical environmental endocrine disruptor that exhibits estrogen-mimicking, hormone-like properties and can cause the collapse of bone homeostasis by an imbalance between osteoblasts and osteoclasts. Various BPA substitutes, structurally similar to BPA, have been used to manufacture ‘BPA-free’ products; however, the regulatory role of BPA alternatives in osteoclast differentiation still remains unelucidated. This study aimed to investigate the effects of these chemicals on osteoclast differentiation using the mouse osteoclast precursor cell line RAW 264.7. Results confirmed that both BPA and its alternatives, bisphenol F and tetramethyl bisphenol F (TMBPF), were nontoxic to RAW 264.7 cells. In particular, tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell staining and activity calculation assays revealed that TMBPF enhanced osteoclast differentiation upon stimulation of the receptor activator of nuclear factor-kappa B ligand (RANKL). Additionally, TMBPF activated the mRNA expression of osteoclast-related target genes, such as the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CtsK). Western blotting analysis indicated activation of the mitogen-activated protein kinase signaling pathway, including phosphorylation of c-Jun N-terminal kinase and p38. Together, the results suggest that TMBPF enhances osteoclast differentiation, and it is critical for bone homeostasis and skeletal health.  相似文献   

18.
Prasiola japonica possesses several biological activities. However, reports on the anti-inflammatory activities and molecular mechanisms of its different solvent fractions remain limited. In this study, we investigated the potential anti-inflammatory activities of P. japonica ethanol extract (Pj-EE) and four solvent fractions of Pj-EE made with hexane (Pj-EE-HF), chloroform (Pj-EE-CF), butanol (Pj-EE-BF), or water (Pj-EE-WF) in both in vitro (LPS-induced macrophage-like RAW264.7 cells) and in vivo (carrageenan-induced acute paw edema mouse models) experiments. The most active solvent fraction was selected for further analysis. Various in vitro and in vivo assessments, including nitric oxide (NO), cytokines, luciferase assays, real-time polymerase chain reactions, and immunoblotting analyses were performed to evaluate the underlying mechanisms. In addition, the phytochemical constituents were characterized by Liquid chromatography-tandem mass spectrometry. In in vitro studies, the highest inhibition of NO production was observed in Pj-EE-CF. Further examination revealed that Pj-EE-CF decreased the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells and suppressed subsequent AP-1-luciferase activity by inhibition of phosphorylation events in the AP-1 signaling pathway. Pj-EE-CF treatment also demonstrated the strongest reduction in thickness and volume of carrageenan-induced paw edema, while Pj-EE-BF showed the lowest activity. Furthermore, Pj-EE-CF also reduced gene expression and cytokines production in tissue lysates of carrageenan-induced paw edema. These findings support and validate the evidence that Pj-EE, and especially Pj-EE-CF, could be a good natural source for an anti-inflammatory agent that targets the AP1 pathway.  相似文献   

19.
Physalinol A (1), a novel 1, 10-seco-physalin with a peroxy bridge, was isolated from the organic extracts of Physalis alkekengi L. var. franchetii (Mast.) Makino. The structure was determined on the basis of 1D and 2D NMR spectra and HR-ESI-MS data. The absolute configuration of 1 was evidenced by X-ray diffraction data and further confirmed by ECD calculations. The isolated compound 1 has no cytotoxicity against HCT-116 and PC-3 cancer cell lines and a weak antimicrobial activity against Escherichia coil. In addition, compound 1 also exhibited a weak anti-inflammatory action in lipopolysacaride (LPS)-induced RAW 264.7 macrophages with an IC50 value of 57.3?±?1.03?μM.  相似文献   

20.
Wu ZJ  Xu XK  Shen YH  Su J  Tian JM  Liang S  Li HL  Liu RH  Zhang WD 《Organic letters》2008,10(12):2397-2400
A phytochemical investigation of Ainsliaea macrocephala led to the isolation of a new dimeric sesquiterpene lactone, ainsliadimer A (1). The structure of 1 was elucidated by spectroscopic analysis, and confirmed by single crystal X-ray diffraction. Ainsliadimer A represents an unusual carbon skeleton with a cyclopentane system connecting the two monomeric sesquiterpene lactone units. This unique molecule exerted potent inhibitory activity against the production of nitric oxide in RAW264.7 stimulated by LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号