首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper presents the results of two-dimensional numerical simulations of the flow field around a trapezoidal box-girder bridge section with later cantilevers, experiencing small-amplitude heaving or pitching harmonic oscillations. Unsteady Reynolds-averaged Navier–Stokes equations are solved in conjunction with an eddy-viscosity and an explicit algebraic Reynolds stress model. Flutter derivatives are determined and compared with wind tunnel results, showing fairly good agreement. The degree of sharpness of the deck lower edges is found to play a key role in the aeroelastic behavior of the profile. In particular, the bridge section fully behaves as a bluff body and is prone to low-reduced-wind-speed torsional galloping in the case of perfectly sharp edges. By contrast, the presence of a small radius of curvature in the section lower corners changes the nature of the instability to coupled flutter and significantly postpones the stability threshold, in line with a quasi-streamlined body behavior. Moreover, a wide sensitivity study is carried out, investigating the influence on the self-excited forces of the amplitude of oscillation, mean angle of attack and Reynolds number. In particular, the numerical simulations for the geometry with smooth lower edges highlight the regime transition occurring when the Reynolds number is varied, with significant effects on the flutter derivatives. Finally, the numerical flow visualizations provide a physical explanation of some phenomena observed in the wind tunnel experiments.  相似文献   

3.
超声速流动中非线性EASM湍流模式应用研究   总被引:1,自引:0,他引:1  
针对超声速复杂流动区域精确模拟的需要,发展了基于k-ω可压缩修正形式的非线性显式代数雷诺应力模式(EASM),提高了该模式对超声速复杂流动的数值模拟精度。通过对二维超声速凹槽和三维双椭球的数值计算表明,与SA和SST常规线性涡黏性湍流模式比较,非线性的EASM模式对大分离以及剪切层流动结构的刻画能力更精细,对剪切层再附区的压力及摩擦系数分布模拟更加精确;EASM模式能够准确地模拟二次激波引起的压强和热流分布情况。  相似文献   

4.
The closure problem of turbulence is still a challenging issue in turbulence modeling. In this work, a stability condition is used to close turbulence. Specifically, we regard single-phase flow as a mixture of turbulent and non-turbulent fluids, separating the structure of turbulence. Subsequently, according to the picture of the turbulent eddy cascade, the energy contained in turbulent flow is decomposed into different parts and then quantified. A turbulence stability condition, similar to the principle of the energy-minimization multi-scale (EMMS) model for gas–solid systems, is formulated to close the dynamic constraint equations of turbulence, allowing the inhomogeneous structural parameters of turbulence to be optimized. We name this model as the “EMMS-based turbulence model”, and use it to construct the corresponding turbulent viscosity coefficient. To validate the EMMS-based turbulence model, it is used to simulate two classical benchmark problems, lid-driven cavity flow and turbulent flow with forced convection in an empty room. The numerical results show that the EMMS-based turbulence model improves the accuracy of turbulence modeling due to it considers the principle of compromise in competition between viscosity and inertia.  相似文献   

5.
The attractive fixed-point solution of a nonlinear cascade model is studied for the homogeneous isotropic turbulence containing a parameter C, introduced by Desnyansky and Novikov. With a traditional constant positive external force added on the first shell equation, it can be found that the attractive fixed-point solution of the model depends on both the parameter C and the external force. Thus, an explicit force is introduced to remove the effects of the external force on the attractive fixed-point solution. Furthermore, two groups of attractive fixed-point solutions are derived theoretically and studied numerically. One of the groups has the same scaling behavior of the velocity in the whole inertial range and agrees well with those observed by Bell and Nelkin for the nonnegative parameters. The other is found to have different scaling behaviors of the velocity at the odd and even number shells for the negative parameters. This special characteristic may be used to study the anomalous scaling behavior of the turbulence.  相似文献   

6.
利用张量的不变量理论,推导得出传统雷诺应力模型中压力应变关联项模型应用于旋转湍流模拟中的一些基本问题,即在纯旋转条件下,传统模型所描述的初始各向异性的湍流中雷诺应力张量演化规律是一个无衰减振荡过程,而快速畸变理论推导结果显示,其演化应是一个阻尼振荡衰减的过程。以衰减雷诺应力为目的,构造出包含旋转率张量高阶量的关联项。然后,结合变形率张量的高阶项,将修正模型扩展至椭圆形流线类型流动。最后,将修正模型应用于轴向旋转圆管内湍流流场的模拟,并将结果与实测结果进行了对比。  相似文献   

7.
A low Reynolds number (LRN) formulation based on the Partially Averaged Navier-Stokes (PANS) modelling method is presented, which incorporates improved asymptotic representation in near-wall turbulence modelling. The effect of near-wall viscous damping can thus be better accounted for in simulations of wall-bounded turbulent flows. The proposed LRN PANS model uses an LRN k-ε model as the base model and introduces directly its model functions into the PANS formulation. As a result, the inappropriate wall-limiting behavior inherent in the original PANS model is corrected. An interesting feature of the PANS model is that the turbulent Prandtl numbers in the k and ε equations are modified compared to the base model. It is found that this modification has a significant effect on the modelled turbulence. The proposed LRN PANS model is scrutinized in computations of decaying grid turbulence, turbulent channel flow and periodic hill flow, of which the latter has been computed at two different Reynolds numbers of Re = 10,600 and 37,000. In comparison with available DNS, LES or experimental data, the LRN PANS model produces improved predictions over the standard PANS model, particularly in the near-wall region and for resolved turbulence statistics. Furthermore, the LRN PANS model gives similar or better results - at a reduced CPU time - as compared to the Dynamic Smagorinsky model.  相似文献   

8.
Considerable experimental, numerical and theoretical evidence has accumulated during the last two decades for the presence of a maximum above the right end of the inertial plateau in compensated high-Reynolds-number turbulence spectra k+5/3E(k). This energy pileup, due to the reduced nonlocal triadic interactions near the viscous cut-off, complies with Kolmogorov's 1941 theory but hampers experimental interpretation about its intermittency corrections. It has been included in a semi-empirical Reynolds-number-dependent complete (i.e. from the largest to the smallest scales) spectral model of isotropic turbulence. This simple parameterization is shown to represent satisfactorily well experimental data over a large variety of situations.  相似文献   

9.
Studies on the unphysical increase of turbulent quantities for RANS simulation induced by shock waves in hypersonic flows are carried out. Numerical experiments on the hypersonic flow over a blunt body reveal that the phenomenon of unphysical increase of turbulent quantities across the detached shock wave is induced by the strain-rate-based production terms of the k-ω $$ \omega $$ and k-ω $$ \omega $$ SST turbulence models, which leads to the over-prediction of aerothermal prediction. While this phenomenon does not occur for Spalart–Allmaras (S–A) turbulence model because of its vorticity-based production term. In order to eliminate this unphysical phenomenon, and to maintain the accuracy of the original models for boundary layer and separation flows, a new correction method for the k-ω $$ \omega $$ and k-ω $$ \omega $$ SST models is proposed: by comparing the orders of magnitude between the strain-rate-based and vorticity-based production terms, the vorticity-based production term is used near the shock waves, while the original strain-rate-based production term is still used in other regions. Finally, the correction method is applied to turbulence and transition flows over blunt bodies, and the numerical results show that the correction method effectively eliminates the unphysical increase of turbulent quantities across shock waves and improves the accuracy of aerothermal and transition onset location prediction.  相似文献   

10.
为改善小型风力机随机湍流工况适应性,以NACA0012翼型为研究对象,采用非嵌入式概率配置点法,获得随机湍流工况下小型风力机叶片翼型运行攻角分布规律;在气动优化中耦合层流分离预测,基于Transition SST模型、拉丁超立方试验设计、Kriging模型和带精英策略非支配排序遗传算法NSGA-II进行高湍流低雷诺数风力机翼型气动优化。结果表明,优化翼型叶片平均风能捕获效率分别提高3.01%和4.76%,标准差分别降低4.76%和14.93%,优化翼型湍流适应性增强。该方法将翼型设计与湍流风况相匹配,为湍流工况低雷诺数翼型及小型风力机设计提供参考。  相似文献   

11.
Most current computations of trubulent flows with second-moment closure adopt the diffusion models which neglect the effect of pressure-velocity correlation. In the present paper the importance of this correlation effect is elucidated the neglect of this effect accounts for some major defects in the wide application of the second-moment closures. Through the relation between and , established by Lumley, we propose here a new turbulence diffusion model which takes into consideration the pressure effect. Applications of this new model in the computation of shearless turbulence mixing layer and plane and round-jet flows show that the spreading rate of these flows can be satisfactorily captured.  相似文献   

12.
In this paper, water flow in a rib-roughened channel is investigated numerically by using Reynolds stress turbulence models (RSM) on a three-dimensional (3-D) domain. Computational results for mean streamwise velocity component and turbulent kinetic energy show good agreements with available experimental data. Five rib pitch-to-height ratios (p/h) of 1, 5, 10, 15 and 20 are analysed for six different Reynolds numbers (Re) of 3000, 7000, 12,000, 20,000, 40,000 and 65,000. Velocity vectors, streamlines and Reynolds stresses are showed for these ratios and Re numbers. Streamlines revealed that Reynolds numbers do not affect flowfield but play an important role in the Reynolds stresses.  相似文献   

13.
This paper presents a new strategy for turbulence model employment with emphasis on the model's applicability for industrial computational fluid dynamics (CFD). In the hybrid modelling strategy proposed here, the Reynolds stress and mean rate of strain tensors are coupled via Boussinesq's formula as in the standard k–εmodel. However, the turbulent kinetic energy is calculated as the sum of the normal Reynolds‐stress components, representing the solutions of the appropriate transport equations. The equations governing the Reynolds‐stress tensor and dissipation rate have been solved in the framework of a ‘background’ second‐moment closure model. Furthermore, the structure parameter C‐µ has been re‐calculated from a newly proposed functional dependency rather than kept constant. This new definition of C‐µ has been assessed by using direct numerical simulation (DNS) results of several generic flow configurations featuring different phenomena such as separation, reattachment and rotation. Comparisons show a large departure of C‐µ from the commonly used value of 0.09. The model proposed is computationally validated in a number of well‐proven fluid flow benchmarks, e.g. backward‐facing step, 180° turn‐around duct, rotating pipe, impinging jet and three‐dimensional (3D) Ahmed body. The obtained results confirm that the present hybrid model delivers a robust solution procedure while preserving most of the physical advantages of the Reynolds‐stress model over simple k–εmodels. A low Reynolds number version of the hybrid model is also proposed and discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, a two‐scale low‐Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (ν, ε), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near‐wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ε) scale to a (ν, ε) scale. The damping functions of the low‐Reynolds number models can thus be simplified and the near‐wall turbulence characteristics, such as the ε distribution, are correctly reproduced. The proposed two‐scale low‐Reynolds number turbulence model is first examined in detail by predicting a two‐dimensional channel flow, and then it is applied to predict a backward‐facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two‐scale model indeed improves the predictions of the turbulent flows considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
This paper puts forth a simplified dynamic eddy-viscosity subgrid-scale model for the vorticity transport equation which is employed in a large eddy simulation study of freely evolving isotropic two-dimensional turbulent flows. The dynamic parameter is averaged in space, thereby retrieving a spatially constant value which only varies in time. The proposed dynamic model is applied to a two-dimensional decaying turbulence problem in a square periodic box, which is a standard prototype of more realistic turbulent flows in the atmosphere and oceans, in order to eliminate any possible errors associated with the boundary conditions or mesh non-uniformities. Compared with high-resolution direct numerical simulations, the performance of the dynamic model is systematically investigated considering various filtering strategies by means of test filters. The effects of the computational resolution and the filtering ratio between the test and the grid filters are also studied by using a huge set of parameters.  相似文献   

16.
内锥流量计流出系数预测方法研究   总被引:4,自引:1,他引:3  
采用标准k-ε模型、RNG(Renormalization Group)k-ε模型、Realizable k-ε模型和Reynolds应力方程模型 RSM(Reynolds Stress Model) 对100 mm口径6种结构的内锥流量计内流场进行了数值模拟.在等效直径比β值为0.65的三种结构内锥流量计流出系数的仿真计算中,四种湍流模型计算结果与物理实验结果误差的平均值分别为4.19%,2.84%,2.88%和-0.822%;对β值为0.85的情况,各模型计算误差的平均值分别为11.8%,9.62%,9.30%和4.76%.研究结果表明,RSM模型在6种结构内锥流量计流出系数的预测中,计算精度较高,表现出了较好的性能,优于三种k-ε涡粘模型,更适于内锥流量计流场数值模拟与流出系数的预测.  相似文献   

17.
ABSTRACT

This paper presents a novel method for the simulation of aerodynamic admittance of turbulent wind on bluff line-like structures using a pseudo 3D model of Vortex Particle Method (VPM). The method is a computationally efficient extension of the 2D VPM, where a coupled set of simulation slices accounts for the 3D nature of the oncoming wind flow. Pre-computed vortex particles are seeded in each of the parallel 2D simulation slices in order to model the turbulent velocity perturbations. Here, the modelling of the inflow seeding particles is enhanced, reducing the computational cost and allowing extendibility into quasi 3D domain. This a priori computation of the seeding vortex particles is based on modelling the atmospheric turbulence characteristics. The method is applied to simulate turbulent flow around an infinitesimally thin flat-plate, to asses its validity at the viscous-rotational boundary layer, which is important for accurate fluid-structure Interaction simulations. Furthermore, sensitivity analysis to different attributes is assessed  相似文献   

18.
采用时域计算分析方法进行了机翼跨音速颤振特性研究。在结构运动网格的基础上,采用格点格式有限体积方法进行空间离散和双时间全隐式方法进行时间推进求解雷诺平均N-S方程。针对流动粘性分别应用了SST湍流模型和SSG雷诺应力模型,通过对跨音速标模算例AGARD445.6机翼的计算结果与实验值的对比分析,其中应用SST湍流模型得到的颤振速度与实验值最为接近,特别是在跨音速段平均相对误差在3%以内;并且计算结果整体上反映了跨音速颤振"凹坑"物理特性,验证了方法的有效性。  相似文献   

19.
This paper compares computational and experimental fluorescence images of the mixing flows associated with a number of fuel injectors, injecting hydrogen fuel into a supersonic coflow. The favourable comparison allows us to establish the reliability of the computational fluid dynamic modelling on which the theoretical images are based. Theoretical calculations of mixing performance parameters are then used to assess the mixing characteristics and performance of the injectors. Received 21 July 2001 / Accepted 16 August 2001 Published online 8 July 2002  相似文献   

20.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号