首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lignin precursors of coniferin and syringin were synthesised, and guaiacyl-type and guaiacyl-syringyl-type oligomeric lignin dehydrogenation polymers (DHP and DHP-GS) were prepared with the bulk method. The carbon-13 nuclear magnetic resonance spectroscopy showed that both DHP-G and DHP-GS contained β-O-4, β-5, β-β, β-1, and 5-5 substructures. Extraction with petroleum ether, ether, ethanol, and acetone resulted in four fractions for each of DHP-G (C11–C14) and DHP-GS (C21–C24). The antibacterial experiments showed that the fractions with lower molecular weight had relatively strong antibacterial activity. The ether-soluble fractions (C12 of DHP-G and C22 of DHP-GS) had strong antibacterial activities against E. coli and S. aureus. The C12 and C22 fractions were further separated by preparative chromatography, and 10 bioactive compounds (G1–G5 and GS1–GS5) were obtained. The overall antibacterial activities of these 10 compounds was stronger against E. coli than S. aureus. Compounds G1, G2, G3, and GS1, which had the most significant antibacterial activities, contained β-5 substructures. Of these, G1 had the best antibacterial activity. Its inhibition zone diameter was 19.81 ± 0.82 mm, and the minimum inhibition concentration was 56.3 ± 6.20 μg/mL. Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) showed that the antibacterial activity of G1 was attributable to a phenylcoumarin dimer, while the introduction of syringyl units reduced antibacterial activity.  相似文献   

2.
Satureja nabateorum (Danin and Hedge) Bräuchler is a perennial herb in the Lamiaceae family that was discovered and classified in 1998. This green herb is restricted to the mountains overlooking the Dead Sea, specifically in Jordan’s southwest, the Edom mountains, and the Tubas mountains in Palestine. Gas chromatography-mass spectrometry (GC-MS) analysis of essential oil (EO) of air-dried and fresh S. nabateorum resulted in the identification of 30 and 42 phytochemicals accounting for 99.56 and 98.64% of the EO, respectively. Thymol (46.07 ± 1.1 and 40.64 ± 1.21%) was the major compound, followed by its biosynthetic precursors γ-terpinene (21.15 ± 1.05% and 20.65 ± 1.12%), and p-cymene (15.02 ± 1.02% and 11.51 ± 0.97%), respectively. Microdilution assay was used to evaluate the antimicrobial property of EOs against Staphylococcus aureus (ATCC 25923), clinical isolate Methicillin-Resistant Staphylococcus aureus (MRSA), Enterococcus faecium (ATCC 700221) Klebsiella pneumoniae (ATCC 13883), Proteus vulgaris (ATCC 700221), Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853) and Candida albicans (ATCC-90028). With a MIC of 0.135 μg/mL, the EOs has the most potent antibacterial action against K. pneumonia. Both EOs display good antifungal efficacy against C. albicans, with a MIC value of 0.75 μg/mL, which was better than that of Fluconazole’s (positive control, MIC = 1.56 μg/mL). The antioxidant capacity of EOs extracted from air-dried and fresh S. nabateorum was determined using the DPPH assay, with IC50 values of 4.78 ± 0.41 and 5.37 ± 0.40 μg/mL, respectively. The tested EOs showed significant cytotoxicity against Hela, HepG2, and COLO-205 cells, with IC50 values ranging from 82 ± 0.98 to 256 ± 1.95 μg/mL. The current work shows there is a possibility to use the S. nabateorum EOs for various applications.  相似文献   

3.
Two undescribed ether derivatives of sesquiterpenes, 1-ethoxycaryolane-1, 9β-diol (1) and 2-ethoxyclovane-2β, 9α-diol (3), and one new monoterpene glycoside, p-menthane-1α,2α,8-triol-4-O-β-D-glucoside (5), were obtained, together with eight known compounds from the stems and leaves of I. simonsii. Their structures were elucidated by spectroscopic methods. Compounds 1–11 were evaluated for their potency against Staphylococcus aureus and clinical methicillin-resistant S. aureus (MRSA). Among them, compound 3 was weakly active against S. aureus (MIC = 128 μg/mL), and compounds 6 and 7 exhibited good antibacterial activity against S. aureus and MRSA (MICs = 2–8 µg/mL). A primary mechanism study revealed that compounds 6 and 7 could kill bacteria by destroying bacterial cell membranes. Moreover, compounds 6 and 7 were not susceptible to drug resistance development.  相似文献   

4.
Eucalyptus oils are widely used for a variety of purposes. This study investigates the terpenoid compositions and antibacterial and antioxidant activities of eucalypt leaf oils extracted from four E. urophylla clones and one E. urophylla × E. camaldulensis hybrid clone grown in Thailand. According to GC/MS analysis, the E. urophylla oils were mainly composed of 1,8-cineole, α-terpinyl acetate, β-caryophyllene, and spathulenol, while 1,8-cineole, α-terpinyl acetate, p-cymene, and γ-terpinene were mostly identified in the hybrid oil. All eucalypt oils exhibited a significant bacteriostatic effect against Gram-positive bacteria, Streptococcus pyogenes, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus. Only the hybrid oil had an effect on all Gram-negative bacteria tested, including Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, and Enterobacter aerogenes. These oils have antibacterial properties that vary according to their terpenoid content. Only the hybrid oil had a potent antioxidant effect, with an IC50 value of 4.21 ± 0.35 mg/mL for free radical (DPPH) scavenging. This oil’s antioxidant effect may be a result of the phenolic terpenoids, thymol and carvacrol. As a result, these oils may be a novel source of antibacterial and antioxidant agents. Additionally, the antibacterial and antioxidant capabilities of the E. urophylla × E. camaldulensis hybrid essential oil are reported for the first time.  相似文献   

5.
Background: Infectious diseases still affect large populations causing significant morbidity and mortality. Bacterial and fungal infections for centuries were the main factors of death and disability of millions of humans. Despite the progress in the control of infectious diseases, the appearance of resistance of microbes to existing drugs creates the need for the development of new effective antimicrobial agents. In an attempt to improve the antibacterial activity of previously synthesized compounds modifications to their structures were performed. Methods: Nineteen thiazolidinone derivatives with 6-Cl, 4-OMe, 6-CN, 6-adamantan, 4-Me, 6-adamantan substituents at benzothiazole ring were synthesized and evaluated against panel of four bacterial strains S. aureus, L. monocytogenes, E. coli and S. typhimirium and three resistant strains MRSA, E. coli and P. aeruginosa in order to improve activity of previously evaluated 6-OCF3-benzothiazole-based thiazolidinones. The evaluation of minimum inhibitory and minimum bactericidal concentration was determined by microdilution method. As reference compounds ampicillin and streptomycin were used. Results: All compounds showed antibacterial activity with MIC in range of 0.12–0.75 mg/mL and MBC at 0.25–>1.00 mg/mL The most active compound among all tested appeared to be compound 18, with MIC at 0.10 mg/mL and MBC at 0.12 mg/mL against P. aeruginosa. as well as against resistant strain P. aeruginosa with MIC at 0.06 mg/mL and MBC at 0.12 mg/mL almost equipotent with streptomycin and better than ampicillin. Docking studies predicted that the inhibition of LD-carboxypeptidase is probably the possible mechanism of antibacterial activity of tested compounds. Conclusion: The best improvement of antibacterial activity after modifications was achieved by replacement of 6-OCF3 substituent in benzothiazole moiety by 6-Cl against S. aureus, MRSA and resistant strain of E. coli by 2.5 folds, while against L. monocytogenes and S. typhimirium from 4 to 5 folds.  相似文献   

6.
A series of 16 new derivatives of harmine N9-Cinnamic acid were synthesized and fully characterized using NMR and MS. The in vitro antibacterial evaluation revealed that most of the synthesized harmine derivatives displayed better antibacterial activities against Gram-positive strains (S. aureus, S. albus and MRSA) than Gram-negative strains (E. coli and PA). In particular, compound 3c showed the strongest bactericidal activity with a minimum inhibitory concentration of 13.67 μg/mL. MTT assay showed that compound 3c displayed weaker cytotoxicity than harmine with IC50 of 340.30, 94.86 and 161.67 μmol/L against WI-38, MCF-7 and HepG2 cell lines, respectively. The pharmacokinetic study revealed that the distribution and elimination of 3c in vivo were rapid in rats with an oral bioavailability of 6.9%.  相似文献   

7.
The present study aimed to identify the composition of the aerial parts of Rubia cordifolia L. A chemical investigation on the EtOAc extracts from the aerial parts of Rubia cordifolia resulted in the isolation of four new anthraquinones, namely Cordifoquinone A–D (1–4), along with 16 known anthraquinones. Their structures were elucidated on the basis of NMR and HR-ESIMS data. All isolates were assessed for their inhibitory effects on NO production in LPS-stimulated RAW 264.7 macrophage cells. Compounds 1, 3 and 10 exhibited significant inhibitory activities with IC50 values of 14.05, 23.48 and 29.23 μmol·L−1, respectively. Their antibacterial activities of four bacteria, Escherichia coli (ATCC 25922), Staphylococcus aureus subsp. aureus (ATCC 29213), Salmonella enterica subsp. enterica (ATCC 14028) and Pseudomonas aeruginosa (ATCC 27853), were also evaluated. Our results indicated that the antibacterial activity of these compounds is inactive.  相似文献   

8.
This study investigated the chemical composition, antioxidant and antimicrobial activity of essential oil extracted from Artemisia aragonensis Lam. (EOA). Hydrodistillation was employed to extract EOA. Gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry analyses (GC-MS) were used to determine the phytochemical composition of EOA. Antioxidant potential was examined in vitro by use of three tests: 2.2-diphenyl-1-picrilhidrazil (DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity assay (TAC). Agar diffusion and microdilution bioassays were used to assess antimicrobial activity. GC/MS and GC-FID detected 34 constituents in the studied EOA. The major component was Camphor (24.97%) followed by Borneol (13.20%), 1,8 Cineol (10.88%), and Artemisia alcohol (10.20%). EOA exhibited significant antioxidant activity as measured by DPPH and FRAP assays, with IC50 and EC50 values of 0.034 ± 0.004 and 0.118 ± 0.008 mg/mL, respectively. EOA exhibited total antioxidant capacity of 7.299 ± 1.774 mg EAA/g. EOA exhibited potent antibacterial activity as judged by the low minimum inhibitory concentration (MIC) values against selected clinically-important pathogenic bacteria. MIC values of 6.568 ± 1.033, 5.971 ± 1.033, 7.164 ± 0.0 and 5.375 ± 0.0 μg/mL were observed against S. aureus, B. subtills, E. coli 97 and E. coli 57, respectively. EOA displayed significant antifungal activity against four strains of fungi: F. oxysporum, C. albicans, A. flavus and A. niger with values of 21.50 ± 0.43, 5.31 ± 0.10, 21.50 ± 0.46 and 5.30 ± 0.036 μg/mL, respectively. The results of the current study highlight the importance of EOA as an alternative source of natural antioxidant and antibacterial drugs to combat antibiotic-resistant microbes and free radicals implicated in the inflammatory responses accompanying microbial infection.  相似文献   

9.
Rhynchanthus beesianus W. W. Smith, an edible, medicinal, and ornamental plant, is mainly cultivated in China and Myanmar. The essential oil (EO) from R. beesianus rhizome has been used as an aromatic stomachic in China. The chemical composition and biological activities of EO from R. beesianus rhizome were reported for the first time. Based on gas chromatography with flame ionization or mass selective detection (GC-FID/MS) results, the major constituents of EO were 1,8-cineole (47.6%), borneol (15.0%), methyleugenol (11.2%), and bornyl formate (7.6%). For bioactivities, EO showed a significant antibacterial activity against Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Proteus vulgaris with the diameter of the inhibition zone (DIZ) (8.66–10.56 mm), minimal inhibitory concentration (MIC) (3.13–6.25 mg/mL), and minimal bactericidal concentration (MBC) (6.25–12.5 mg/mL). Moreover, EO (128 μg/mL) significantly inhibited the production of proinflammatory mediators nitric oxide (NO) (92.73 ± 1.50%) and cytokines tumor necrosis factor-α (TNF-α) (20.29 ± 0.17%) and interleukin-6 (IL-6) (61.08 ± 0.13%) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages without any cytotoxic effect. Moreover, EO exhibited significant acetylcholinesterase (AChE) inhibitory activity (the concentration of the sample that affords a 50% inhibition in the assay (IC50) = 1.03 ± 0.18 mg/mL) and moderate α-glucosidase inhibition effect (IC50 = 11.60 ± 0.25 mg/mL). Thus, the EO could be regarded as a bioactive natural product and has a high exploitation potential in the cosmetics and pharmaceutical industries.  相似文献   

10.
In recent years, instead of the use of chemical substances, alternative substances, especially plant extracts, have been characterized for an active packaging of antibacterial elements. In this study, the peels of mangosteen (Garcinia mangostana), rambutan (Nephelium lappaceum), and mango (Mangifera indica) were extracted to obtain bioactive compound by microwave-assisted extraction (MAE) and maceration with water, ethanol 95% and water–ethanol (40:60%). All extracts contained phenolics and flavonoids. However, mangosteen peel extracted by MAE and maceration with water/ethanol (MT-MAE-W/E and MT-Ma-W/E, respectively) contained higher phenolic and flavonoid contents, and exhibited greater antibacterial activity against Staphylococcus aureus and Escherichia coli. Thus, both extracts were analyzed by liquid chromatograph-mass spectrometer (LC-MS) analysis, α-mangostin conferring antibacterial property was found in both extracts. The MT-MAE-W/E and MT-Ma-W/E films exhibited 30.22 ± 2.14 and 30.60 ± 2.83 mm of growth inhibition zones against S. aureus and 26.50 ± 1.60 and 26.93 ± 3.92 mm of growth inhibition zones against E. coli. These clear zones were wider than its crude extract approximately 3 times, possibly because the film formulation enhanced antibacterial activity with sustained release of active compound. Thus, the mangosteen extracts have potential to be used as an antibacterial compound in active packaging.  相似文献   

11.
The development of organic polymer materials for disinfection and sterilization is thought of as one of the most promising avenues to solve the growth and spread of harmful microorganisms. Here, a series of linear polyisocyanide quaternary ammonium salts (L-PQASs) with different structures and chain lengths were designed and synthesized by polymerization of phenyl isocyanide monomer containing a 4-chloro-1-butyl side chain followed by quaternary amination salinization. The resultant compounds were characterized by 1H NMR and FT-IR. The antibacterial activity of L-PQASs with different structures and chain lengths against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated by determining the minimum inhibitory concentrations (MICs). The L-POcQAS-M50 has the strongest antimicrobial activity with MICs of 27 μg/mL against E. coli and 32 μg/mL against S. aureus. When the L-PQASs had the same polymerization degree, the order of the antibacterial activity of the L-PQASs was L-POcQAS-Mn > L-PBuQAS-Mn > L-PBnQAS-Mn > L-PDBQAS-Mn (linear, polyisocyanide quaternary ammonium salt, monomer, n = 50,100). However, when L-PQASs had the same side chain, the antibacterial activity reduced with the increase of the molecular weight of the main chain. These results demonstrated that the antibacterial activity of L-PQASs was dependent on the structure of the main chain and the length of the side chain. In addition, we also found that the L-POcQAS-M50 had a significant killing effect on MK-28 gastric cancer cells.  相似文献   

12.
A novel synthesis of thiazolo[2,3-b]quinazolines 4(a–e), pyrido[2′,3′:4,5]thiazolo[2,3-b]quinazolines {5(a–e), 6(a–e), and 7(a–e)}, pyrano[2′,3′:4,5]thiazolo[2,3-b]quinazolines 8(a–e), and benzo[4,5]thiazolo[2,3-b]quinazoloine9(a–e) derivatives starting from 2-(Bis-methylsulfanyl-methylene)-5,5-dimethyl-cyclohexane-1,3-dione 2 as efficient α,α dioxoketen dithioacetal is reported and the synthetic approaches of these types of compounds will provide an innovative molecular framework to the designing of new active heterocyclic compounds. In our study, we also present optimization of the synthetic method along with a biological evaluation of these newly synthesized compounds as antioxidants and antibacterial agents against the bacterial strains, like S. aureus, E. coli, and P. aeruginosa. Among all the evaluated compounds, it was found that some showed significant antioxidant activity at 10 μg/mL while the others exhibited better antibacterial activity at 100 μg/mL. The results of this study showed that compound 6(c) possessed remarkable antibacterial activity, whereas compound 9(c) exhibited the highest efficacy as an antioxidant. The structures of the new synthetic compounds were elucidated by elemental analysis, IR, 1H-NMR, and 13C-NMR.  相似文献   

13.
A series of quaternary diammonium salts derivatives of 1,4:3,6-dianhydro-l-iditol were synthesized, using isommanide (1,4:3,6-dianhydro-d-mannitol) as a starting material. Both aromatic (pyridine, 4-(N,N-dimethylamino)pyridine (DMAP), (3-carboxamide)pyridine; N-methylimidazole) and aliphatic (trimethylamine, N,N-dimethylhexylamine, N,N-dimethyloctylamine, N,N-dimethyldecylamine) amines were used, giving eight gemini quaternary ammonium salts (QAS). All salts were tested for their antimicrobial activity against yeasts, Candida albicans and Candida glabrata, as well as bacterial Staphylococcus aureus and Escherichia coli reference strains. Moreover, antibacterial activity against 20 isolates of S. aureus collected from patients with skin and soft tissue infections (n = 8) and strains derived from subclinical bovine mastitis milk samples (n = 12) were evaluated. Two QAS with octyl and decyl residues exhibited antimicrobial activity, whereas those with two decyl residues proved to be the most active against the tested pathogens, with MIC of 16–32, 32, and 8 µg/mL for yeast, E. coli, and S. aureus reference and clinical strains, respectively. Only QAS with decyl residues proved to be cytotoxic in MTT assay against human keratinocytes (HaCaT), IC50 12.8 ± 1.2 μg/mL. Ames test was used to assess the mutagenic potential of QAS, and none of them showed mutagenic activity in the concentration range 4–2000 µg/plate.  相似文献   

14.
Syringopicroside is a natural drug with antibacterial activity, which is the main ingredient of Syringa oblata Lindl (S. oblata). In order to further develop the application of S. oblata and evaluate the ability of syringopicroside against Streptococcus suis (S. suis), this investigation first applied an ultrasonic-assisted method to extract syringopicroside, and then response surface methodology (RSM) was performed to get the optimum condition. Based on RSM analysis, a second-order polynomial equation about the syringopicroside yield and four variables, including ultrasonic power, time, temperature, and liquid-to-solid ratio, was purposed. Through RSM prediction and model verification experiments, the optimum conditions were determined, as follows: ultrasonic time was 63 min, temperature was 60 °C, a liquid-to-solid ratio was set to 63 mL/g, and ultrasonic power was 835 W. Under this condition, a high syringopicroside yield was obtained (3.07 ± 0.13 mg/g), which was not significantly different with a predicated value. After separation and purification by HPD 500 microporous resin, then mass spectrum was applied to identify the main ingredient in aqueous extract. A minimal inhibitory concentration (MIC) assay revealed the value against S. suis of syringopicroside was 2.56 µg/µL and syringopicroside with sub-inhibitory concentrations that could effectively inhibit biofilm formation of S. suis. Besides, scanning electron microscopy analysis indicated syringopicroside could destroy the multi-layered aggregation structure of S. suis. Finally, molecular docking analysis confirmed that syringopicroside was combined with Orfy protein of S. suis through hydrogen bonds, hydrophobic interaction, and π-π stacking.  相似文献   

15.
The present study aimed to analyze the antioxidant and antimicrobial activity of anthocyanins extracted from colored wheat flour and wheat-grass juice against human pathogens. The total anthocyanin content and antioxidant potential in colored wheat flour and wheat-grass juice extracts were significantly higher than white flour and wheat-grass juice extracts. Ultra-performance liquid chromatography showed the maximum number of anthocyanin peaks in black wheat, with delphinidin-3-o-galactoside chloride, delphinidin-3-o-glucoside chloride, and cyanindin-3-o-glucoside chloride as the major contributors. Among flour extracts, maximum zones of inhibition against Staphylococcus aureus (MTCC 1934), Pseudomonas aeruginosa (MTCC 1434), Escherichia coli, and Candida albicans (MTCC 227) were produced by black flour extract, having the highest anthocyanin content. It exhibited a minimum microbicidal concentration (MMC) of 200 mg/mL against E. coli and C. albicans; and 100 and 150 mg/mL against S. aureus and P. aeruginosa, respectively. Black and purple flour extracts exhibited a minimum inhibitory concentration (MIC) of 50 mg/mL against S. aureus and P. aeruginosa. White flour extracts did not show MMC against E. coli and C. albicans. Among wheat-grass juice extracts, black wheat-grass was most effective and showed an MIC of 100–150 mg/mL against all pathogens. It exhibited an MMC of 200 mg/mL against S. aureus and P. aeruginosa. Hence, anthocyanin-rich colored wheat could be of nutraceutical importance.  相似文献   

16.
《印度化学会志》2023,100(8):101069
This study focuses on the microwave-assisted synthesis of Cr2O3 nanoparticles for the development of antibacterial materials. Characterization techniques including FT-IR spectroscopy, UV–vis spectroscopy, SEM-EDX, and XRD, were employed to analyze the nanoparticles' properties. The antibacterial efficacy against E. coli, S. aureus, B. subtilis, and P. aeruginosa was evaluated, with significant activity observed against all pathogens, highlighting their potential as antibacterial materials. The novelty of this study lies in the synthesis of Cr2O3 nanoparticles and their application as potent antibacterial agents against various pathogens. The results of XRD study concludes the average size of Cr2O3 nanoparticles as 49.96 nm. The synthesized Cr2O3 nanoparticles demonstrated a good zone of inhibition against E. coli (22 mm), S. aureus (19 mm), B. subtilis (18 mm), and P. aeruginosa (21 mm). The findings of the study suggest that Cr2O3NPs have potential as a novel antibacterial agent, and further research in this area could lead to the development of new and effective treatments for bacterial infections.  相似文献   

17.
The chemical composition and biological activities of the essential oils from the leaves, stems, and roots of Kadsura coccinea (K. coccinea) were investigated. The essential oils were extracted by hydro distillation and analyzed by gas chromatography mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Antioxidant activities of the essential oils were examined with DPPH radical scavenging assay, ABTS cation radical scavenging assay, and ferric reducing antioxidant power assay. Antimicrobial activities were evaluated by determining minimum inhibitory concentrations (MIC) and minimum microbiocidal concentrations (MMC). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of the essential oils were also tested. A total of 46, 44, and 47 components were identified in the leaf, stem, and root oils, representing 95.66%, 97.35%, and 92.72% of total composition, respectively. The major compounds of three essential oils were α-pinene (16.60–42.02%), β-pinene (10.03–18.82%), camphene (1.56–10.95%), borneol (0.50–7.71%), δ-cadinene (1.52–7.06%), and β-elemene (1.86–4.45%). The essential oils were found to have weak antioxidant activities and cholinesterase inhibition activities. The essential oils showed more inhibitory effects against Staphylococcus aureus (S. aureus) than those of other strains. The highest antimicrobial activity was observed in the root oil against S. aureus, with MIC of 0.78 mg/mL. Therefore, K. coccinea essential oils might be considered as a natural antibacterial agent against S. aureus with potential application in food and pharmaceutical industries.  相似文献   

18.
The p-aminobenzoic acid was applied for the synthesis of substituted 1-phenyl-5-oxopyrrolidine derivatives containing benzimidazole, azole, oxadiazole, triazole, dihydrazone, and dithiosemicarbazide moieties in the structure. All the obtained compounds were evaluated for their in vitro antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, and Pseudomonas aeruginosa by using MIC and MBC assays. This study showed a good bactericidal activity of γ-amino acid and benzimidazoles derivatives. The antimicrobial activity of the most promising compounds was higher than ampicillin. Furthermore, two benzimidazoles demonstrated good antimicrobial activity against L. monocytogenes (MIC 15.62 µg/mL) that was four times more potent than ampicillin (MIC 65 µg/mL). Further studies are needed to better understand the mechanism of the antimicrobial activity as well as to generate antimicrobial compounds based on the 1-phenyl-5-oxopyrrolidine scaffold.  相似文献   

19.
A series of ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands of the general type (arene)(NHC)Ru(II)X2 (where X = halide) was prepared, characterized, and evaluated as antibacterial agents in comparison to the respective metal free benzimidazolium cations. The ruthenium(II) NHC complexes generally triggered stronger bacterial growth inhibition than the metal free benzimidazolium cations. The effects were much stronger against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than against Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa), and all complexes were inactive against the fungus Candida albicans. Moderate inhibition of bacterial thioredoxin reductase was confirmed for selected complexes, indicating that inhibition of this enzyme might be a contributing factor to the antibacterial effects.  相似文献   

20.
Sunflower (Helianthus annuus L.) contains active ingredients, such as flavonoids, alkaloids and tannins. Nevertheless, few studies have focused on essential oil from the receptacle of sunflower (SEO). In this work, we investigated the chemical composition and antimicrobial and antioxidant activities of SEO. The yield of SEO was about 0.42% (v/w) by hydrodistillation. A total of 68 volatile components of SEO were putatively identified by gas chromatography–mass spectrometry (GC-MS). The main constituents of SEO were α-pinene (26.00%), verbenone (7.40%), terpinolene (1.69%) and α-terpineol (1.27%). The minimum inhibitory concentration (MIC) of SEO against P. aeruginosa and S. aureus was 0.2 mg/mL. The MIC of SEO against S. cerevisiae was 3.2 mg/mL. The MIC of SEO against E. coli and Candida albicans was 6.4 mg/mL. The results showed that SEO had high antibacterial and antifungal activities. Three different analytical assays (DPPH, ABTS and iron ion reducing ability) were used to determine the antioxidant activities. The results showed that SEO had antioxidant activities. To summarize, the results in this study demonstrate the possibility for the development and application of SEO in potential natural preservatives and medicines due to its excellent antimicrobial and antioxidant activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号