首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often requires precious-metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition-metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm−2 with 95.5±4.0 % CO Faraday efficiency at −1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high-curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali-metal cations resulting in the enhanced CO2 electroreduction efficiency.  相似文献   

2.
The electrochemical carbon dioxide reduction reaction (CO2RR) to C2 chemicals has received great attention. Here, we report the cuprous oxide (Cu2O) nanocubes cooperated with silver (Ag) nanoparticles via the replacement reaction for a synergetic CO2RR. The Cu2O-Ag tandem catalyst exhibits an impressive Faradaic efficiency (FE) of 72.85% for C2 products with a partial current density of 243.32 mA·cm−2. The electrochemical experiments and density functional theory (DFT) calculations reveal that the introduction of Ag improves the intermediate CO concentration on the catalyst surface and meanwhile reduces the C-C coupling reaction barrier energy, which is favorable for the synthesis of C2 products.  相似文献   

3.
A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.? or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition‐metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm?2 with 95.5±4.0 % CO Faraday efficiency at ?1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high‐curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali‐metal cations resulting in the enhanced CO2 electroreduction efficiency.  相似文献   

4.
The use of microwave activation in Ni/TiO2-catalyzed carbon dioxide reforming of propane increases the catalytic activity and significantly reduces the coke formation in comparison with conventional thermal heating. During microwave activated reaction, C2—C3 olefins were formed, apart from CO and H2, and the selectivity to olefins reached 6%. It was suggested that exposure to microwave radiation may induce local high-temperature heating of catalytically active phases and catalyst sites, which is not inherent in conventional heating. According to X-ray absorption spectroscopy (XAS = XANES + EXAFS), unlike conventional thermal heating in a hydrogen flow, on exposure to microwave radiation, the Ni2+ cations are partly reduced to Ni0.  相似文献   

5.
The electrochemical conversion of carbon dioxide (CO2) to carbon monoxide (CO) is a favorable approach to reduce CO2 emission while converting excess sustainable energy to important chemical feedstocks. At high current density (>100 mA cm−2), low energy efficiency (EE) and unaffordable cell cost limit the industrial application of conventional CO2 electrolyzers. Thus, a crucial and urgent task is to design a new type of CO2 electrolyzer that can work efficiently at high current density. Here we report a polymer-supported liquid layer (PSL) electrolyzer using polypropylene non-woven fabric as a separator between anode and cathode. Ag based cathode was fed with humid CO2 and potassium hydroxide was fed to earth-abundant NiFe-based anode. In this configuration, the PSL provided high-pH condition for the cathode reaction and reduced the cell resistance, achieving a high full cell EE over 66 % at 100 mA cm−2.  相似文献   

6.
To date, the chemical conversion of organic pollutants into value-added chemical feedstocks rather than CO2 remains a major challenge. Herein, we successfully developed a coupled piezocatalytic and advanced oxidation processes (AOPs) system for achieving the conversion of various organic pollutants to CO. The CO product stems from the specific process in which organics are first oxidized to carbonate through peroxymonosulfate (PMS)-based AOPs, and then the as-obtained carbonate is converted into CO by piezoelectric reduction under ultrasonic (US) vibration by using a Co3S4/MoS2 catalyst. Experiments and DFT calculations show that the introduction of Co3S4 not only effectively promotes the transfer and utilization of piezoelectric electrons but also realizes highly selective conversion from carbonate to CO. The Co3S4/MoS2/PMS system has achieved selective generation of CO in actual complex wastewater treatment for the first time, indicating its potential practical applicability.  相似文献   

7.
Non-equilibrium plasma, which was engendered by dielectric barrier discharge (DBD) was used to analyze the mutual conversion between CO2 and CO. The results showed that the conversion ratio of CO increased monotonously with the increasing voltage. But CO2 was not so. Its conversion ratio reached maximum when the voltage was 3600 V in Ar system. It also showed that the existence of water molecules was more advanageous for the conversion of CO to CO2 in Air system than in oxygen system, and the conversion ratio could reach 75.8% when the relative humidity was 100%. We also discussed the energy yield and energy efficiency, and the result was that high voltage and high concentration of reactant was disadvantageous for energy utilization.  相似文献   

8.
《中国化学快报》2023,34(4):107740
The conversion of propargylic alcohols and carbon dioxide (CO2) into fine chemicals suffers from issues of harsh reaction conditions and difficult catalyst recovery. To achieve efficient CO2 activation at low energy consumption, a silver-anchored porous aromatic framework catalyst Ag@PAF-DAB with high active phase density and CO2 adsorption capacity was proposed. Since Ag@PAF-DAB has the dual functions of CO2 capture and conversion, propargylic alcohols were completely converted into α-alkylidene cyclic carbonate or α?hydroxy ketone as high value-added product under atmospheric pressure (CO2, 0.1 MPa) and low silver equivalent (0.5 mol%). Notably, Ag@PAF-DAB exhibited broad substrate diversity, high stability, and excellent reusability. By applying FTIR and GC, the key to green synthetic route of α?hydroxy ketone was confirmed to lie in the further hydration of α-alkylidene cyclic carbonate.  相似文献   

9.
With impressive progress in carbon capture and renewable energy, carbon dioxide (CO2) conversion into useful chemicals has become a potential tool against climate change. Electrochemical CO2 conversion into C2 products (ethylene and ethanol) is an especially economically promising approach and an active research area. Nonetheless, catalyst layer design for CO2 conversion is challenging because of the complex CO2-to-C2 reaction pathways. In this review, we highlight key ideas in catalyst layer design for CO2 conversion to C2 in the past few years. We identify three fundamental principles to control catalyst selectivity—local CO2 and CO concentration, local pH, and intermediate–catalyst interaction. To achieve these goals, we introduce design strategies for both catalytic materials and overall catalyst layer morphology.  相似文献   

10.
The electrochemical reduction of carbon dioxide (CO2ER) is amongst one the most promising technologies to reduce greenhouse gas emissions since carbon dioxide (CO2) can be converted to value-added products. Moreover, the possibility of using a renewable source of energy makes this process environmentally compelling. CO2ER in ionic liquids (ILs) has recently attracted attention due to its unique properties in reducing overpotential and raising faradaic efficiency. The current literature on CO2ER mainly reports on the effect of structures, physical and chemical interactions, acidity, and the electrode–electrolyte interface region on the reaction mechanism. However, in this work, new insights are presented for the CO2ER reaction mechanism that are based on the molecular interactions of the ILs and their physicochemical properties. This new insight will open possibilities for the utilization of new types of ionic liquids. Additionally, the roles of anions, cations, and the electrodes in the CO2ER reactions are also reviewed.  相似文献   

11.
Although zeolites such as NaY and 13X adsorb CO2 much more than CO, the adsorption amount of CO2 and CO can be reversed if the zeolites are modified with CuCl. When zeolite NaY or 13X is mixed with CuCl and heated, high CO adsorption selectivity and capacity can be obtained. Isotherms show the adsorbents have CO capacity much higher than CO2. This is because CuCl has dispersed onto the surface of the zeolites to form a monolayer after the heat treatment and the monolayer dispersed CuCl can provide tremendous Cu(I) to selective adsorb CO and inhibit the CO2 adsorption. The monolayer dispersion of CuCl is confirmed by XRD and EXAFS studies. The loading of CuCl on the zeolites has a threshold below which the CuCl forms monolayer after heating and crystalline phase of CuCl can not be detected by XRD. An adsorbent of CuCl/NaY with CuCl content closed to the monolayer capacity shows very high CO selective adsorbability for CO2, N2, H2 and CH4. At temperature higher than room temperature, the adsorbent has even better CO selectivity for CO2. Using the adsorbent, a single-stage 4 beds PSA process, working at 70°C and 0.4 MPa to 0.013 MPa, can obtain CO product with purity >99.5% and yield >85%.  相似文献   

12.
Atmospheric carbon dioxide (CO2) has increased from 278 to 408 parts per million (ppm) over the industrial period and has critically impacted climate change. In response to this crisis, carbon capture, utilization, and storage/sequestration technologies have been studied. So far, however, the economic feasibility of the existing conversion technologies is still inadequate owing to sluggish CO2 conversion. Herein, we report an aqueous zinc– and aluminum–CO2 system that utilizes acidity from spontaneous dissolution of CO2 in aqueous solution to generate electrical energy and hydrogen (H2). The system has a positively shifted onset potential of hydrogen evolution reaction (HER) by 0.4 V compared to a typical HER under alkaline conditions and facile HER kinetics with low Tafel slope of 34 mV dec?1. The Al–CO2 system has a maximum power density of 125 mW cm?2 which is the highest value among CO2 utilization electrochemical system.  相似文献   

13.
Aiming highly efficient conversion of greenhouse gas CO2 to cyclic carbonates, a biomass Ru(III) Schiff base complex catalyst ( SalRu ) was constructed by employing a derivative of Lignin degradation (5-aldehyde vanillin). The SalRu catalyst had a remarkable conversion for epoxides into corresponding cyclic carbonates even at atmospheric pressure of CO2 without the presence of co-catalyst. As the condition at 120 °C and 2 MPa CO2 the conversion reached to 94 % with selectivity at 99 % after 8 h. 32 % cyclic carbonate production was obtained even under 0.2 MPa CO2 pressure. The epoxide activation and ring opening, CO2 insertion and cyclic carbonate formation were illuminated explicitly through the of characteristic absorption peaks changing, which further providing direct and visual evidence for the mechanism proposing. This study has important theoretical significance for the comprehensive utilization of environmental pollutants and energy.  相似文献   

14.
The electrochemical carbon dioxide reduction reaction (CO2RR) to produce synthesis gas (syngas) with tunable CO/H2 ratios has been studied by supporting Pd catalysts on transition metal nitride (TMN) substrates. Combining experimental measurements and density functional theory (DFT) calculations, Pd‐modified niobium nitride (Pd/NbN) is found to generate much higher CO and H2 partial current densities and greater CO Faradaic efficiency than Pd‐modified vanadium nitride (Pd/VN) and commercial Pd/C catalysts. In‐situ X‐ray diffraction identifies the formation of PdH in Pd/NbN and Pd/C under CO2RR conditions, whereas the Pd in Pd/VN is not fully transformed into the active PdH phase. DFT calculations show that the stabilized *HOCO and weakened *CO intermediates on PdH/NbN are critical to achieving higher CO2RR activity. This work suggests that NbN is a promising substrate to modify Pd, resulting in an enhanced electrochemical conversion of CO2 to syngas with a potential reduction in precious metal loading.  相似文献   

15.
我们研究了4种负载型Pt催化剂(1Pt/NiO、1Pt/FeOx、1Pt/Co3O4和Pt/CeO2)上不同反应条件下CO氧化活性及抗H2O和CO2性能.发现反应气氛中CO2的加入与CO形成了竞争吸附,并在催化剂表面形成了碳酸盐物种堵塞了活性位,从而导致催化剂失活.反应气氛中H2O的加入对1Pt/CeO2催化剂的活性有所抑制,但对1Pt/FeOx、1Pt/NiO和1Pt/Co3O4催化剂的活性却有促进作用.在1Pt/FeOx和1Pt/CeO2催化剂上的分步反应实验和动力学研究表明,尽管H2O的加入在两种催化剂上均与CO形成了竞争吸附,但在1Pt/FeOx催化剂上H2O在载体表面解离形成的羟基更易与CO反应,开辟了新的反应途径,从而提高了反应性能.此外,H2O的加入能有效分解该催化剂上的碳酸盐物种,从而保持了其稳定性.  相似文献   

16.
Transformations of carbon dioxide catalyzed by the hydride form of [TiFe0.95Zr0.03Mo0.02]Hx, by the industrial Pt/Al2O3 catalyst, and by a mixture of the above materials were studied. Study of the thermal desorption of H2 showed the presence of two forms of absorbed hydrogen, namely, the weakly bound hydrogen, which is evolved from the intermetallic structure on heating to 430 °C under Ar, and the strongly bound hydrogen (SBH), which remains in the intermetallic compound at higher temperatures (up to 700 °C). In a carbon dioxide medium, the SBH enters into selective CO2 reduction to give CO at 350—430 °C and 10—12 atm. The selectivity of the formation of CO reaches 80—99% for conversion of CO2 between 50—70%, the SBH being consumed almost entirely for the reduction of CO2. In the presence of the mixed catalyst, conjugate reactions proceed efficiently; dehydrogenation of cyclohexane yields hydrogen, which is consumed for CO2 hydrogenation.  相似文献   

17.
Selective chemical reduction of CO2(g) (with carrier Ar) in presence of organic compounds, either mixed in the gas-phase or present as a contact surface, under Dielectric Barrier Discharge is presented in this study. Along with gas-phase CO generation, added hydrocarbons (C n H 2n+x ; n = 6–12; x = 0 or 2) resulted in HCHO production with the maximum H-atom utilization efficiency being ∼15% of the total present. Product CO and HCHO were estimated separately by pre-concentration in specific absorber solutions followed by their discrete colorimetric measurements. On the other hand, in presence of various types of organic surfaces (e.g. wax, plastics and polymers, also acting simultaneously as a dielectric barrier), it was found that while CO could be estimated as above, in the ensuing chemical conversion, product HCHO was retained on these surfaces. On leaching the HCHO into the absorber solution, its production efficiency was estimated to be ∼5% of CO2.  相似文献   

18.
In this work, the modulation of activity and selectivity via photoreduction of carbon dioxide under simulated sunlight was achieved by treating P25 and P25/Pt NPs with KOH. It found that KOH treatment could significantly improve the overall conversion efficiency and switch the selectivity for CO. Photoelectric characterizations and CO2-TPD demonstrated that the synergistic effect of K+ and OH- accelerated the separation and migration of photogenerated charges, and also improved CO2 adsorption level. Significantly, the K ions could act as active sites for CO2 adsorption and further activation. In situ FTIR measurements and DFT calculations confirmed that K+ enhanced the charge density of adjacent atoms and stabilize CO* groups, reducing the reaction energy barrier and inducing the switching of original CH4 to CO, which played a selective regulatory role. This study provides insights into the photocatalytic activity and selectivity of alkali-treated photocatalysts and facilitates the design of efficient and product-specific photocatalysis.  相似文献   

19.
Fluorescence-based detection technique using coordination polymer has been considered an attractive alternative over conventional approaches. Herein, a new luminescent zinc(II) coordination polymer, [Zn(4-ABPT)(NIPA)(H2O)], SSICG-5 , is synthesized by using a Lewis acidic Zn(II) ion, aromatic nitro group containing ligand 5-nitroisophthalic acid (H2NIPA), and basic −NH2 rich ligand 3,5-di(pyridine-4-yl)-4H-1,2,4-triazol-4-amine (4-ABPT). SSICG-5 can detect Fe3+ and Cr2O72− selectively with a LOD of 0.16 μM and 1.94 μM, respectively. Additionally, carbon dioxide (CO2) fixation via one-pot CO2 cycloaddition reaction has significant importance for reduced waste formation, minimizing reaction time and lowering chemical usage. Zn metal centre of SSICG-5 possesses a replaceable coordinated water molecule. The active metal sites combined with the Lewis acidic and basic sites of the ligands make SSICG-5 an ideal bifunctional heterogeneous catalyst for efficient CO2 cycloaddition reaction under room temperature (RT), solvent-free conditions. Notably, SSICG-5 exhibits near quantitative conversion (turnover number (TON) of 198) of propylene oxide to its carbonate compound under mild reaction conditions.  相似文献   

20.
Solar fuel generation from thermochemical H2O or CO2 splitting is a promising and attractive approach for harvesting fuel without CO2 emissions. Yet, low conversion and high reaction temperature restrict its application. One method of increasing conversion at a lower temperature is to implement oxygen permeable membranes (OPM) into a membrane reactor configuration. This allows for the selective separation of generated oxygen and causes a forward shift in the equilibrium of H2O or CO2 splitting reactions. In this research, solar-driven fuel production via H2O or CO2 splitting with an OPM reactor is modeled in isothermal operation, with an emphasis on the calculation of the theoretical thermodynamic efficiency of the system. In addition to the energy required for the high temperature of the reaction, the energy required for maintaining low oxygen permeate pressure for oxygen removal has a large influence on the overall thermodynamic efficiency. The theoretical first-law thermodynamic efficiency is calculated using separation exergy, an electrochemical O2 pump, and a vacuum pump, which shows a maximum efficiency of 63.8%, 61.7%, and 8.00% for H2O splitting, respectively, and 63.6%, 61.5%, and 16.7% for CO2 splitting, respectively, in a temperature range of 800 °C to 2000 °C. The theoretical second-law thermodynamic efficiency is 55.7% and 65.7% for both H2O splitting and CO2 splitting at 2000 °C. An efficient O2 separation method is extremely crucial to achieve high thermodynamic efficiency, especially in the separation efficiency range of 0–20% and in relatively low reaction temperatures. This research is also applicable in other isothermal H2O or CO2 splitting systems (e.g., chemical cycling) due to similar thermodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号