首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a simple method for detection of multiple edge cracks in Euler–Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm.  相似文献   

2.
In this paper, the coupling of lateral and longitudinal vibrations due to the presence of transverse surface crack in a rotor is explored. A crack in a rotor is known to introduce coupling between lateral and longitudinal vibrations. Steady state unbalance response of a cracked rotor with a single centrally situated crack subjected to periodic axial impulses is investigated experimentally. The cracked rotor is excited axially using an electrodynamic exciter at a frequency equal to its bending natural frequency in both non-rotating and rotating conditions. The resulting time domain and frequency domain signals of the cracked rotor are studied. Spectral response of the cracked rotor with and without axial excitation is found to be distinctively different. When excited axially, it shows prominent presence of rotor bending natural frequency. However for an uncracked rotor, the response is similar with or without axial excitation. It is thus proposed that the response of the rotor to axial impulse excitation could be used for more reliable diagnosis of rotor cracks.  相似文献   

3.
The problem of calculating the natural frequencies of beams with multiple cracks and frames with cracked beams is studied. The natural frequencies are obtained using a new method in which a rotational spring model is used to represent the cracks. For beams, dynamic stiffness matrices of order 4 are obtained in a recursive manner, according to the number of cracks, by applying partial Gaussian elimination. The Wittrick–Williams algorithm is used to compute the natural frequencies in the resulting transcendental eigenvalue problem. Published numerical examples for cracked beams are used for validation. The global dynamic stiffness matrix of a frame with multiply cracked members is then assembled. A published two bay frame example is used to evaluate the new method. The effect of changing the location of a crack in a two bay two storey frame is studied numerically, giving insight into the inverse problem of damage detection.  相似文献   

4.
A novel method is proposed for calculating the natural frequencies of a multiple cracked beam and detecting unknown number of multiple cracks from the measured natural frequencies. First, an explicit expression of the natural frequencies through crack parameters is derived as a modification of the Rayleigh quotient for the multiple cracked beams that differ from the earlier ones by including nonlinear terms with respect to crack severity. This expression provides a simple tool for calculating the natural frequencies of the beam with arbitrary number of cracks instead of solving the complicated characteristic equation. The obtained nonlinear expression for natural frequencies in combination with the so-called crack scanning method proposed recently by the authors allowed the development of a novel procedure for consistent identification of unknown amount of cracks in the beam with a limited number of measured natural frequencies. The developed theory has been illustrated and validated by both numerical and experimental results.  相似文献   

5.
The influence of two transverse open cracks on the antiresonances of a double cracked cantilever beam is investigated both analytically and experimentally. It is shown that there is a shift in the antiresonances of the cracked beam depending on the location and size of the cracks. These antiresonance changes, complementary with natural frequency changes, can be used as additional information carrier for crack identification in double cracked beams. Experimental results from tests on plexiglas beams damaged at different locations and different magnitudes are found to be in good agreement with theoretical predictions. Based on the results of the present work, an efficient prediction scheme for crack localization and characterization in double cracked beams is proposed.  相似文献   

6.
By analyzing the limitations of weight dominance and by taking the complicated whirl of the rotor into account, general equations of motion have been developed in case of a Jeffcott rotor with a transverse crack. The angle between the crack direction and the shaft deformation direction is used to determine the closing and opening of the crack, allowing one to study the dynamic response without assuming weight dominance. Using the new equations, the dynamic response of a cracked rotor near its critical speed has been computed via a numerical method to investigate the influence of nonlinear breathing of the crack and that of the imbalance orientation angle β on the stability, critical speed and peak response of the rotor. The results show that nonlinear breathing can improve the stability of a rotor in contrast to a rotor with an open crack, and, with a reversed imbalance (70°<β<270°), that it can reduce the vibration response in contrast to an uncracked rotor. The basic characteristics of a cracked rotor near its critical speed are similar to those of an uncracked rotor. The critical speed can be determined by measuring the rotation of the center of gravity. The critical speed of a cracked rotor is located between the natural frequencies of the fully open crack and those of the fully closed crack and depends on the imbalance orientation angle. Its value is lowest at β≈90° and highest at β≈270°. The peak in the response at the critical speed is mainly determined by the imbalance orientation angle. At β≈0° and 180°, the peak corresponds to the maximum and minimum response, respectively.  相似文献   

7.
This study proposes an analytical model for nonlinear vibrations in a cracked rectangular isotropic plate containing a single and two perpendicular internal cracks located at the center of the plate. The two cracks are in the form of continuous line with each parallel to one of the edges of the plate. The equation of motion for isotropic cracked plate, based on classical plate theory is modified to accommodate the effect of internal cracks using the Line Spring Model. Berger?s formulation for in-plane forces makes the model nonlinear. Galerkin?s method used with three different boundary conditions transforms the equation into time dependent modal functions. The natural frequencies of the cracked plate are calculated for various crack lengths in case of a single crack and for various crack length ratio for the two cracks. The effect of the location of the part through crack(s) along the thickness of the plate on natural frequencies is studied considering appropriate crack compliance coefficients. It is thus deduced that the natural frequencies are maximally affected when the crack(s) are internal crack(s) symmetric about the mid-plane of the plate and are minimally affected when the crack(s) are surface crack(s), for all the three boundary conditions considered. It is also shown that crack parallel to the longer side of the plate affect the vibration characteristics more as compared to crack parallel to the shorter side. Further the application of method of multiple scales gives the nonlinear amplitudes for different aspect ratios of the cracked plate. The analytical results obtained for surface crack(s) are also assessed with FEM results. The FEM formulation is carried out in ANSYS.  相似文献   

8.
The dynamic characteristics of a cracked rotor with an active magnetic bearing (AMB) are theoretically analyzed in this paper. The effects of using optimal controller parameters on the dynamic characteristics of the cracked rotor and the effect of a crack on the stability of the active control system are discussed. It is shown that the dynamic characteristics of the cracked rotor with AMBs are clearly more complex than that of the traditional cracked rotor system. Adaptive control with AMBs may hide the fault characteristics of the cracked rotor, rather than helping to diagnose a crack; this will depend on the controller strategy used. It is very difficult to detect a crack in the rotor with an AMB support system when the vibration of the rotor system is fully controlled. Monitoring the super-harmonic components of 2× and 3× revolution in the sub-critical speed region can be used as an index to detect a crack in the rotor with an AMB system. If the effect of the crack is not taken into account at the design stage of the controller, then the rotor-AMB system will lose its stability in some cases when cracks appear.  相似文献   

9.
The coupling of lateral and longitudinal vibrations due to the presence of transverse surface crack in a rotor is explored. Steady state unbalance response of a Jeffcott rotor with a single centrally situated crack subjected to periodic axial impulses is studied. Partial opening of crack is considered and the stress intensity factor at the crack tip is used to decide the extent of crack opening. A crack in a rotor is known to introduce coupling between lateral and longitudinal vibrations. Therefore, lateral vibration response of a cracked rotor to axial impulses is studied in detail. Spectral analysis of response to periodic multiple axial impulses shows the presence of rotor bending natural frequency as well as side bands around impulse excitation frequency and its harmonics due to modulations caused by rotor running frequency. It is concluded that the above approach can prove to be a useful tool in detecting cracks in rotors.  相似文献   

10.
Cracked rotors are not only important from a practical and economic viewpoint, they also exhibit interesting dynamics. This paper investigates the modelling and analysis of machines with breathing cracks, which open and close due to the self-weight of the rotor, producing a parametric excitation. After reviewing the modelling of cracked rotors, the paper analyses the use of auxiliary excitation of the shaft, often implemented using active magnetic bearings to detect cracks. Applying a sinusoidal excitation generates response frequencies that are combinations of the rotor spin speed and excitation frequency. Previously this system was analysed using multiple scales analysis; this paper suggests an alternative approach based on the harmonic balance method, and validates this approach using simulated and experimental results. Consideration is also given to some issues to enable this approach to become a robust condition monitoring technique for cracked shafts.  相似文献   

11.
In recent years, significant efforts have been devoted to developing non-destructive techniques for damage identification in structures. The work reported in this paper is part of an ongoing research on the experimental investigations of the effects of cracks and damages on the integrity of structures, with a view to detect, quantify, and determine their extents and locations. Two sets of aluminum beams were used for this experimental study. Each set consisted of seven beams, the first set had fixed ends, and the second set was simply supported. Cracks were initiated at seven different locations from one end to the other end (along the length of the beam) for each set, with crack depth ratios ranging from 0.1d to 0.7d (d is the beam depth) in steps of 0.1, at each crack location. Measurements of the acceleration frequency responses at seven different points on each beam model were taken using a dual channel frequency analyzer.The damage detection schemes used in this study depended on the measured changes in the first three natural frequencies and the corresponding amplitudes of the measured acceleration frequency response functions.  相似文献   

12.
The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.  相似文献   

13.
闭合裂纹非共线混频超声检测试验研究   总被引:7,自引:0,他引:7       下载免费PDF全文
针对结构中微裂纹检测难题,发展了一种闭合裂纹非共线混频超声检测方法。在对非共线混频超声检测机理分析基础上,进行了结构中疲劳裂纹混频非线性超声检测实验。对有无裂纹试件中检测信号进行了滤波和时频分析,结果表明,可根据信号滤波后时域波形中是否存在明显的混频波包或时频分析中是否存在明显的和频分量,实现有无闭合裂纹的判识;通过移动激励探头的位置,控制两列入射声波在试件中的交汇位置,实现试件中不同深度位置的混频非线性检测。并根据测得的混频非线性系数沿试件深度方向上分布,实现了闭合裂纹沿深度方向上长度的测量。研究工作为结构中微裂纹定量评价做了有益探索。   相似文献   

14.
This paper investigates the coupled bending vibrations of a stationary shaft with two cracks. It is known from the literature that, when a crack exists in a shaft, the bending, torsional, and longitudinal vibrations are coupled. This study focuses on the horizontal and vertical planes of a cracked shaft, whose bending vibrations are caused by a vertical excitation, in the clamped end of the model. When the crack orientations are not symmetrical to the vertical plane, a response in the horizontal plane is observed due to the presence of the cracks. The crack orientation is defined by the rotational angle of the crack, a parameter which affects the horizontal response. When more cracks appear in a shaft, then the coupling becomes stronger or weaker depending on the relative crack orientations. It is shown that a double peak appears in the vibration spectrum of a cracked or multi-cracked shaft.Modeling the crack in the traditional manner, as a spring, yields analytical results for the horizontal response as a function of the rotational angle and the depths of the two cracks. A 2×2 compliance matrix, containing two non-diagonal terms (those responsible for the coupling) serves to model the crack. Using the Euler–Bernoulli beam theory, the equations for the natural frequencies and the coupled response of the shaft are defined. The experimental coupled response and eigenfrequency measurements for the corresponding planes are presented. The double peak was also experimentally observed.  相似文献   

15.
This paper presents a meshless formulation using non-uniform rational B-spline (NURBS) basis functions, and its applications to evaluate natural frequencies of a beam having multiple open-cracks. Node-based NURBS basis functions are used to construct the approximation function. The characteristic differentiability of the NURBS basis functions allows it to represent a function having specific degrees of smoothness and/or discontinuity. The discontinuity can be incorporated simply by assigning multiple knots at those locations. Hence, it can yield exact solutions having interior discontinuous derivatives. These advantages of NURBS are well known, and have been used extensively in graphical approximation of geometrical surfaces. However, it is seldom used in other engineering applications. To model the multiple open-cracks in a beam, quartic NURBS basis functions are employed and quadruplicate knots are assigned at the crack locations. Hence, it is capable to model the abrupt changes of slope (the first derivative of displacement) across a crack. In the present applications, additional equivalent massless rotational springs are inserted at the crack locations to represent the local flexibility caused by the cracks. As such, the cracked beam can be treated in the usual manner as a continuous beam. By adopting the meshless Petrov–Galerkin formulation, a generalized stiffness matrix for the cracked beam can be derived. Compared to the conventional finite element method, the present method does not require a finite element mesh for the purposes of interpolation and numerical integration. The advantages and effectiveness of the present method is illustrated in solving the eigenfrequencies of a beam having multiple open-cracks of different depths.  相似文献   

16.
An energy-based numerical model is developed to investigate the influence of cracks on structural dynamic characteristics during the vibration of a beam with open crack(s). Upon the determination of strain energy in the cracked beam, the equivalent bending stiffness over the beam length is computed. The cracked beam is then taken as a continuous system with varying moment of intertia, and equations of transverse vibration are obtained for a rectangular beam containing one or two cracks. Galerkin's method is applied to solve for the frequencies and vibration modes. To identify the crack, the frequency contours with respect to crack depth and location are defined and plotted. The intersection of contours from different modes could be used to identify the crack location and depth.  相似文献   

17.
The article introduces a new mathematical model for the cracked rotating shaft. The model is based on the rigid finite element (RFE) method, which has previously been successfully applied for the dynamic analysis of many complicated, mechanical structures. In this article, the RFE method is extended and adopted for the modeling of rotating machines. An original concept of crack modeling utilizing the RFE method is developed. The crack is presented as a set of spring–damping elements of variable stiffness connecting two sections of the shaft. An alternative approach for approximating the breathing mechanism of the crack is introduced. The approach is simple and allows one to intuitively and systematically prepare and analyze the model of a cracked rotor.The proposed method is illustrated with numerical and experimental results. The experiments conducted for the uncracked free–free rotor as well as the numerical results obtained with other software confirm the accuracy of the RFE model. The numerical analysis conducted for a set of cracked rotors has shown that, depending on the eccentricity and its angular location, the breathing behavior of the crack may take different forms. In spite of this, the frequency spectra for different cracks are almost identical.Due to its simplicity and numerous advantages, the proposed approach may be useful for rotor crack detection, especially if methods utilizing the mathematical model of the rotor are applied.  相似文献   

18.
Free vibration analysis of a cracked beam by finite element method   总被引:2,自引:0,他引:2  
In this paper, the natural frequencies and mode shapes of a cracked beam are obtained using the finite element method. An ‘overall additional flexibility matrix’, instead of the ‘local additional flexibility matrix’, is added to the flexibility matrix of the corresponding intact beam element to obtain the total flexibility matrix, and therefore the stiffness matrix. Compared with analytical results, the new stiffness matrix obtained using the overall additional flexibility matrix can give more accurate natural frequencies than those resulted from using the local additional flexibility matrix. All the elements in the overall additional flexibility matrix are computed by 128-point (1D) or (128×128)-point (2D) Gauss quadrature, and then further best fitted using the least-squares method. The explicit form best-fitted formulas agree very well with the numerical integration results, and are very convenient for use and valuable for further reference. In addition, the authors constructed a shape function that can perfectly satisfy the local flexibility conditions at the crack locations, which can give more accurate vibration modes.  相似文献   

19.
This paper studies the non-linear dynamic response of a cracked rotor by taking the swing vibration of disc into consideration. The results show that if a small crack appears, the frequency of transverse oscillation is synchronous with rotating speed ratio (Ω), and the frequency of swing vibration is N Ω (N=1,2,…). As the crack increases, the response becomes chaotic in some range of Ω. The deeper the crack is, the wider the chaotic range of Ω is. Routes to chaos include intermittence to chaos and quasi-period to chaos. When the crack is fairly deep, some new resonance regions develop. In these regions, the response becomes infinity rapidly. The appearance of intermittence chaos is induced by the frequent frustration of stable oscillation, which is resulted from the continuous increase of swing amplitude. Unbalance parameter U is effective in suppressing chaos. Crack angle β cannot affect the essence of response, but can influence the amplitude of synchronous response.  相似文献   

20.
In the present study, the additional slope is used to consider the crack breathing, and is expressed explicitly in the equation of motion as one of the inputs to produce the bending moment at the crack position. Inversely, the additional slope is calculated by integrating on the crack region based on a fracture mechanics concept. The response of a cracked rotor is formulated based on the transfer matrix method. The transient behavior due to the crack breathing is considered by introducing a ‘moving’ Fourier-series expansion concept to the additional slope. The time-varying harmonic components of the additional slope are used to calculate the harmonic responses. The application considered is a general rotor model composed of multiple shafts, disks and cracks, and resilient bearings at both ends. Verification analysis is carried out for a simple rotor model similar to those found in the literature. Using the additional slope, the cracked rotor behavior is explained by the crack depth and rotation speed increase. It is shown that region on the crack front line having the dominant stress intensity factor value moves from the central area to both ends, as the crack depth increases. The result matches well with the crack propagation pattern shown in a bench mark test in the literature. Whirl orbits near the critical and sub-critical speed ranges of the rotor are discussed. It is shown that there exists some speed range near the critical speed, where the temporary whirl direction reversal and phase shift exist. When an unbalance is applied, the peculiar features, such as the whirl direction reversal and phase shift, disappear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号