首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stability and hydrodynamic behaviors of different lattice Boltzmann models including the lattice Boltzmann equation (LBE), the differential lattice Boltzmann equation (DLBE), the interpolation-supplemented lattice Boltzmann method (ISLBM) and the Taylor series expansion- and least square-based lattice Boltzmann method (TLLBM) are studied in detail. Our work is based on the von Neumann linearized stability analysis under a uniform flow condition. The local stability and hydrodynamic (dissipation) behaviors are studied by solving the evolution operator of the linearized lattice Boltzmann equations numerically. Our investigation shows that the LBE schemes with interpolations, such as DLBE, ISLBM and TLLBM, improve the numerical stability by increasing hyper-viscosities at large wave numbers (small scales). It was found that these interpolated LBE schemes with the upwind interpolations are more stable than those with central interpolations because of much larger hyper-viscosities.  相似文献   

2.
This paper at first shows the details of finite volume-based lattice Boltzmann method (FV-LBM) for simulation of compressible flows with shock waves. In the FV-LBM, the normal convective flux at the interface of a cell is evaluated by using one-dimensional compressible lattice Boltzmann model, while the tangential flux is calculated using the same way as used in the conventional Euler solvers. The paper then presents a platform to construct one-dimensional compressible lattice Boltzmann model for its use in FV-LBM. The platform is formed from the conservation forms of moments. Under the platform, both the equilibrium distribution functions and lattice velocities can be determined, and therefore, non-free parameter model can be developed. The paper particularly presents three typical non-free parameter models, D1Q3, D1Q4 and D1Q5. The performances of these three models for simulation of compressible flows are investigated by a brief analysis and their application to solve some one-dimensional and two-dimensional test problems. Numerical results showed that D1Q3 model costs the least computation time and D1Q4 and D1Q5 models have the wider application range of Mach number. From the results, it seems that D1Q4 model could be the best choice for the FV-LBM simulation of hypersonic flows.  相似文献   

3.
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier–Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.  相似文献   

4.
A lattice Boltzmann equation (LBE) for axisymmetric thermal flows is proposed. The model is derived from the kinetic theory which exhibits several features that distinguish it from other previous LBE models. First, the present thermal LBE model is derived from the continuous Boltzmann equation, which has a solid foundation and clear physical significance; Second, the model can recover the energy equation with the viscous dissipation term and work of pressure which are usually ignored by traditional methods and the existing thermal LBE models; Finally, unlike the existing thermal LBE models, no velocity and temperature gradients appear in the force terms which are easy to realize in the present model. The model is validated by thermal flow in a pipe, thermal buoyancy-driven flow, and swirling flow in vertical cylinder by rotating the top and bottom walls. It is found that the numerical results agreed excellently with analytical solution or other numerical results.  相似文献   

5.
A lattice Boltzmann flux solver (LBFS) is presented in this work for simulation of incompressible viscous and inviscid flows. The new solver is based on Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S) equations and lattice Boltzmann equation (LBE). The macroscopic differential equations are discretized by the finite volume method, where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing and time interval, limitation to viscous flows. LBFS is validated by its application to simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numerical results compare very well with available data in the literature, which show that LBFS has the second order of accuracy in space, and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.  相似文献   

6.
Challenges in lattice Boltzmann computing   总被引:7,自引:0,他引:7  
Some of the most urgent challenges facing the lattice Boltzmann equation (LBE) to rival state-of-the-art computer fluid dynamics (CFD) techniques are discussed. A novel LBE scheme fork- turbulence modeling is proposed.  相似文献   

7.
A new differential lattice Boltzmann equation (LBE) is presented in this work, which is derived from the standard LBE by using Taylor series expansion only in spatial direction with truncation to the second-order derivatives. The obtained differential equation is not a wave-like equation. When a uniform grid is used, the new differential LBE can be exactly reduced to the standard LBE. The new differential LBE can be applied to solve irregular problems with the help of coordinate transformation. The present scheme inherits the merits of the standard LBE. The 2-D driven cavity flow is chosen as a test case to validate the present method. Favorable results are obtained and indicate that the present scheme has good prospects in practical applications.  相似文献   

8.
In this paper, a hybrid lattice Boltzmann flux solver (LBFS) is proposed for simulation of viscous compressible flows. In the solver, the finite volume method is applied to solve the Navier-Stokes equations. Different from conventional Navier-Stokes solvers, in this work, the inviscid flux across the cell interface is evaluated by local reconstruction of solution using one-dimensional lattice Boltzmann model, while the viscous flux is still approximated by conventional smooth function approximation. The present work overcomes the two major drawbacks of existing LBFS [28–31], which is used for simulation of inviscid flows. The first one is its ability to simulate viscous flows by including evaluation of viscous flux. The second one is its ability to effectively capture both strong shock waves and thin boundary layers through introduction of a switch function for evaluation of inviscid flux, which takes a value close to zero in the boundary layer and one around the strong shock wave. Numerical experiments demonstrate that the present solver can accurately and effectively simulate hypersonic viscous flows.  相似文献   

9.
We propose a consistent lattice Boltzmann equation (LBE) with baroclinic coupling between species and mixture dynamics to model the active scalar dynamics in multi-species mixtures. The proposed LBE model is directly derived from the linearized Boltzmann equations for mixtures and it has the following two distinctive features. First, it uses the multiple-relaxation-time collision model so that it has the flexibility of independent Reynolds and Schmidt numbers, and better numerical stability. Second, it satisfies the indifferentiability principle therefore leads to a set of consistent hydrodynamic equations for barycentric velocity for mixtures. The proposed LBE model is validated through simulations of decaying homogeneous isotropic turbulence in three dimensions. We simulate both the active and passive scalar dynamics in decaying turbulence for mixtures. We also compute various statistical quantities and their decay exponents in decaying turbulence. Our results agree well with existing results for both scalar dynamics and decaying turbulence.  相似文献   

10.
It is well known that the lattice Boltzmann equation method (LBE) can model the incompressible Navier-Stokes (NS) equations in the limit where density goes to a constant. In a LBE simulation, however, the density cannot be constant because pressure is equal to density times the square of sound speed, hence a compressibility error seems inevitable for the LBE to model incompressible flows. This work uses a modified equilibrium distribution and a modified velocity to construct an LBE which models time-independent (steady) incompressible flows with significantly reduced compressibility error. Computational results in 2D cavity flow and in a 2D flow with an exact solution are reported.  相似文献   

11.
We present the lattice Boltzmann equation (LBE) with multiple relaxation times (MRT) to simulate pressure-driven gaseous flow in a long microchannel. We obtain analytic solutions of the MRT-LBE with various boundary conditions for the incompressible Poiseuille flow with its walls aligned with a lattice axis. The analytical solutions are used to realize the Dirichlet boundary conditions in the LBE. We use the first-order slip boundary conditions at the walls and consistent pressure boundary conditions at both ends of the long microchannel. We validate the LBE results using the compressible Navier–Stokes (NS) equations with a first-order slip velocity, the information-preservation direct simulation Monte Carlo (IP-DSMC) and DSMC methods. As expected, the LBE results agree very well with IP-DSMC and DSMC results in the slip velocity regime, but deviate significantly from IP-DSMC and DSMC results in the transition-flow regime in part due to the inadequacy of the slip velocity model, while still agreeing very well with the slip NS results. Possible extensions of the LBE for transition flows are discussed.  相似文献   

12.
Asymptotic analysis of the lattice Boltzmann equation   总被引:1,自引:0,他引:1  
In this article we analyze the lattice Boltzmann equation (LBE) by using the asymptotic expansion technique. We first relate the LBE to the finite discrete-velocity model (FDVM) of the Boltzmann equation with the diffusive scaling. The analysis of this model directly leads to the incompressible Navier–Stokes equations, as opposed to the compressible Navier–Stokes equations obtained by the Chapman–Enskog analysis with convective scaling. We also apply the asymptotic analysis directly to the fully discrete LBE, as opposed to the usual practice of analyzing a continuous equation obtained through the Taylor-expansion of the LBE. This leads to a consistency analysis which provides order-by-order information about the numerical solution of the LBE. The asymptotic technique enables us to analyze the structure of the leading order errors and the accuracy of numerically derived quantities, such as vorticity. It also justifies the use of Richardson’s extrapolation method. As an example, a two-dimensional Taylor-vortex flow is used to validate our analysis. The numerical results agree very well with our analytic predictions.  相似文献   

13.
In this letter,we present a lattice Boltzmann simulation for complex flow in a solar wall system which includes porous media flow and heat transfer,specifically for solar energy utilization through an unglazed transpired solar air collector(UTC).Besides the lattice Boltzmann equation(LBE) for time evolution of particle distribution function for fluid field,we introduce an analogy,LBE for time evolution of distribution function for temperature.Both temperature fields of fluid(air) and solid(porous media) are modeled.We study the effects of fan velocity,solar radiation intensity,porosity,etc.on the thermal performance of the UTC.In general,our simulation results are in good agreement with what in literature.With the current system setting,both fan velocity and solar radiation intensity have significant effect on the thermal performance of the UTC.However,it is shown that the porosity has negligible effect on the heat collector indicating the current system setting might not be realistic.Further examinations of thermal performance in different UTC systems are ongoing.The results are expected to present in near future.  相似文献   

14.
The lattice Boltzmann equation (LBE) is considered as a promising approach for simulating flows of liquid and gas. Most of LBE studies have been devoted to regular square LBE and few works have focused on the rectangular LBE in the simulation of gaseous microscale flows. In fact, the rectangular LBE, as an alternative and efficient method, has some advantages over the square LBE in simulating flows with certain computational domains of large aspect ratio (e.g., long micro channels). Therefore, in this paper we expand the application scopes of the rectangular LBE to gaseous microscale flow. The kinetic boundary conditions for the rectangular LBE with a multiple-relaxation-time (MRT) collision operator, i.e., the combined bounce-back/specular-reflection (CBBSR) boundary condition and the discrete Maxwell's diffuse-reflection (DMDR) boundary condition, are studied in detail. We observe some discrete effects in both the CBBSR and DMDR boundary conditions for the rectangular LBE and present a reasonable approach to overcome these discrete effects in the two boundary conditions. It is found that the DMDR boundary condition for the square MRT-LBE can not realize the real fully diffusive boundary condition, while the DMDR boundary condition for the rectangular MRT-LBE with the grid aspect ratio a≠1 can do it well. Some numerical tests are implemented to validate the presented theoretical analysis. In addition, the computational efficiency and relative difference between the rectangular LBE and the square LBE are analyzed in detail. The rectangular LBE is found to be an efficient method for simulating the gaseous microscale flows in domains with large aspect ratios.  相似文献   

15.
The classical Chapman–Enskog expansion is performed for the recently proposed finite-volume formulation of lattice Boltzmann equation (LBE) method [D.V. Patil, K.N. Lakshmisha, Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys. 228 (2009) 5262–5279]. First, a modified partial differential equation is derived from a numerical approximation of the discrete Boltzmann equation. Then, the multi-scale, small parameter expansion is followed to recover the continuity and the Navier–Stokes (NS) equations with additional error terms. The expression for apparent value of the kinematic viscosity is derived for finite-volume formulation under certain assumptions. The attenuation of a shear wave, Taylor–Green vortex flow and driven channel flow are studied to analyze the apparent viscosity relation.  相似文献   

16.
用格子Boltzmann模型模拟非等温流场   总被引:1,自引:0,他引:1       下载免费PDF全文
冯士德  张琼  任荣彩 《物理学报》2001,50(7):1207-1212
根据微观和宏观之间的质量、动量、能量守恒准则和在原格子Boltzmann模型基础上,建立了几个新的格子Boltzmann模型,使得在外力场中的格子Boltzmann模型得到进一步完善.通过还原宏观流体力学方程,捕捉到了浮力强迫系数与Grashof数之间的关系.所得动量方程和Navier Stokes方程相比,在黏性输运项上有明显的改进,说明黏性应力不但与流体的速度梯度和流体的压缩性有关,而且还与非定常的内能梯度和动量通量有关.该模型对非等温流场的数值结果证明了其具有很好的数值稳定性和适用性. 关键词: Boltzmann模型 平衡分布函数 流体力学方程  相似文献   

17.
《Physics letters. A》2006,354(3):173-182
A momentum exchange-based immersed boundary-lattice Boltzmann method is presented in this Letter for simulating incompressible viscous flows. This method combines the good features of the lattice Boltzmann method (LBM) and the immersed boundary method (IBM) by using two unrelated computational meshes, an Eulerian mesh for the flow domain and a Lagrangian mesh for the solid boundaries in the flow. In this method, the non-slip boundary condition is enforced by introducing a forcing term into the lattice Boltzmann equation (LBE). Unlike the conventional IBM using the penalty method with a user-defined parameter or the direct forcing scheme based on the Navier–Stokes (NS) equations, the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. Numerical examples show that the present method can provide very accurate numerical results.  相似文献   

18.
The effect of viscosity and viscosity difference and boundary patterned slip on mixing in a micro mixer has been numerically studied using lattice Boltzmann method (LBM). The slip and no-slip ratio is not constant and varies irregularly, and viscosity is altered by changing the relaxation time in LBE equation. The slip boundary condition is simulated by specular reflection boundary and the no-slip boundary condition is simulated by bounce back boundary. It has been found that it is feasible to optimize the micro mixer design by combining the viscosity effect and boundary patterned ratio altogether.  相似文献   

19.
A lattice Boltzmann equation for diffusion   总被引:10,自引:0,他引:10  
The formulation of lattice gas automata (LGA) for given partial differential equations is not straightforward and still requires some sort of magic. Lattice Boltzmann equation (LBE) models are much more flexible than LGA because of the freedom in choosing equilibrium distributions with free parameters which can be set after a multiscale expansion according to certain requirements. Here a LBE is presented for diffusion in an arbitrary number of dimensions. The model is probably the simplest LBE which can be formulated. It is shown that the resulting algorithm with relaxation parameter =1 is identical to an explicit finite-difference (EFD) formulation at its stability limit. Underrelaxation (0<<1) allows stable integration beyond the stability limit of EFD. The time step of the explicit LBE integration is limited by accuracy and not by stability requirements.  相似文献   

20.
In the lattice Boltzmann method for the shallow water equations (LABSWE), the force term involves the first order derivative related to a bed slope, which has to be determined using the centred scheme for an accurate solution. However, such calculation contradicts the spirit of only simple arithmetic calculations required in the lattice Boltzmann method. This paper shows how to remove this drawback from the LABSWE by incorporating the bed level into the lattice Boltzmann equation in a consistent manner with the lattice Boltzmann approach. Three numerical tests have been presented to verify the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号