首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

2.
The reaction of 2‐(2‐methylaziridin‐1‐yl)‐3‐ureidopyridines 12 with triphenylphosphine, carbon tetra‐chloride, and triethylamine (Appel's conditions) led to the corresponding carbodiimides 13 , which underwent intramolecular cycloaddition reaction with aziridine under the reaction conditions to give the pyridine‐fused heterocycles, 2,3‐dihydro‐1H‐imidazo[2′,3′:2,3]imidazo[4,5‐b]pyridines 16 and 12,13‐dihydro‐5H‐1,3 ‐benzodiazepino [2′,3′:2,3] imidazo[4,5‐b]pyridines 17 .  相似文献   

3.
Using ionic liquids as green media, a series of 6‐arylbenzo[4,5]imidazo[1,2‐c]quinazoline derivatives is synthesized via a reaction of 2‐(1H‐benzo[d]imidazol‐2‐yl)aniline and benzaldehydes in the air. While the intermediate products of 6‐aryl‐5,6‐dihydrobenzo[4,5]imidazo[1,2‐c]quinazolines were obtained in high yields at the same conditions under nitrogen protection.  相似文献   

4.
The reactivity of 3‐nitro‐4‐pyridyl isocyanate ( 7 ) and 5‐nitropyridin‐2‐yl isocyanate ( 9 ) in 1,3‐dipolar cycloaddition reactions with azides and pyridine N‐oxides has been investigated. 1,3‐Dipolar cycloaddition to trimethylsilylazide (TMSA) afforded the respective tetrazolinones, 1‐(3‐nitropyridin‐4‐yl)‐1H‐tetrazol‐5(4H)one ( 8 , 50 %) and 1‐(5‐nitropyridin‐2‐yl)‐1H‐tetrazol‐5(4H)one ( 11 , 64 %). Respectively, 1,3‐dipolar cycloaddition of nitropyridyl isocyanates 7 and 9 to 3,5‐dimethylpyridine N‐oxide ( 14 ), 3‐methylpyridine N‐oxide ( 21 ) and pyridine N‐oxide ( 22 ) gave the substituted amines, 3,5‐dimethyl‐N‐(3‐nitropyridin‐4‐yl)pyridin‐2‐amine ( 17 ), 3,5‐dimethyl‐N‐(5‐nitropyridin‐2‐yl)pyridin‐2‐amine ( 20 ), N‐(5‐nitropyridin‐2‐yl)pyridin‐2‐amine ( 24 ), 5‐methyl‐N‐(5‐nitropyridin‐2‐yl)pyridin‐2‐amine ( 23 ) and 3‐methyl‐N‐(5‐nitropyridin‐2‐yl)pyridin‐2‐amine ( 25 ) in 65 ‐ 80 % yield, obtained by cycloaddition, rearrangement and decarboxylation. The results demonstrate that the nitropyridyl isocyanates ( 7,9 ) readily undergo 1,3‐dipolar cyloaddition reactions similar to phenyl isocyanates.  相似文献   

5.
2,3‐Dihydro‐4H‐thiopyrano[2,3‐b]pyridin‐4‐ones 4 were prepared by a three‐step sequence from commercially available 2‐chloropyridine ( 1 ). Thus, successive treatment of 1 with iPr2NLi (LDA) and α,β‐unsaturated aldehydes gave 1‐(2‐chloropyridin‐3‐yl)alk‐2‐en‐1‐ols 2 , which were oxidized with MnO2 to 1‐(2‐chloropyridin‐3‐yl)alk‐2‐en‐1‐ones 3 . The reactions of 3 with NaSH?n H2O proceeded smoothly at 0° in DMF to provide the desired thiopyranopyridinones. Similarly, 2,3‐dihydro‐4H‐thiopyrano[2,3‐c]pyridin‐4‐ones 8 and 2,3‐dihydro‐4H‐thiopyrano[3,2‐c]pyridin‐4‐ones 12 were obtained starting from 3‐chloropyridine ( 5 ) and 4‐chloropyridine ( 9 ), respectively.  相似文献   

6.
Reaction of 2‐acyl‐6‐methylbenzo[b]furan‐3‐acetic acids and their derivatives such as amides and esters with hydrazine does not give expected 1‐alkyl‐5H‐benzofuro[2,3‐e]diazepin‐4‐ones ones but results in 2‐amino‐7‐methyl‐2H‐benzo[4,5]furo[2,3‐c]pyridin‐3‐ones or (3‐R‐6‐methylbenzo[b]furan‐2‐yl)alkyl ketone azines.  相似文献   

7.
A number of thiosemicarbazones of 2‐acetyl‐imidazo[4,5‐b]pyridine were prepared in order to investigate their in vitro antineoplastic activities. Three compounds: (i) 2‐acetylimidazo[4,5‐b]pyridin‐4‐ sec ‐butyl‐3‐thiosemicarbazone [(A7), NSC674098], (ii) 2‐acetylimidazo[4,5‐b]pyridin‐4‐tert‐butyl‐3‐thiosemi‐carbazone [(A9), NSC674099], (iii) 2‐acetylimidazo[4,5‐b]pyridin‐4‐cyclohexyl‐3‐thiosemicarbozone [(A11), NSC674101] showed remarkable activity against some of the cell lines tested. The Biological Evaluation Committee of N.C.I. determined that further secondary testing should be carried out (these compounds were tested against prostate cancer).  相似文献   

8.
The 3‐amino‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐one 6 and N‐(1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxalin‐3‐yl)carbamates 17a,b were synthesized from the 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxa‐line‐3‐carboxylate 1b via the 1,5‐dihydro‐4‐hydroxy‐1‐methylpyridazino[3,4‐b]quinoxaline‐3‐carbohydrazide 13b and then 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxaline‐3‐carboxazide 8 . Heating of compound 13b and arylalde‐hydes afforded the 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxaline‐3‐carbo(2‐arylmethylene)hydrazides 14a‐d.  相似文献   

9.
Synthesis of pyrazolo[1,5‐a]pyrimidines, [1,2,4]triazolo[1,5‐a]pyrimidine, 8,10‐dimethyl‐2‐(5‐methyl‐1‐phenyl‐4,5‐dihydro‐1H‐1,2,3‐triazol‐4‐yl)pyrido[2′,3′:3,4]‐pyrazolo[1,5‐a]pyrimidine, benzo[4,5]imidazo[1,2‐a]pyrimidine via heterocyclic amines, and sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐triazole‐4‐yl)prop‐2‐en‐1‐one were carried out. Also, synthesis of isoxazoles, and pyrazoles from sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐triazole‐4‐yl)prop‐2‐en‐1‐one and hydroxymoyl chlorides and hydrazonoyl halides, respectively, were made. Analogously, (1,2,3‐triazol‐4‐yl)thieno[2,3‐b]pyridine derivatives were obtained from sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐ triazole‐4‐yl)prop‐2‐en‐1‐one and cyanothioacetamide followed by its reacting with active methylene compounds. In addition to full characterization of all synthesized compounds, they were tested to evaluate their antimicrobial activities, and some compounds showed competitive activities to those of tetracycline, the typical antibacterial drug, and clotrimazole, the typical antifungal drug.  相似文献   

10.
A convenient three‐step procedure for the synthesis of three types of 3‐aryl‐2‐sulfanylthienopyridines 4, 8 , and 12 has been developed. The first step of the synthesis of thieno[2,3‐b]pyridine derivatives 4 is the replacement of the halo with a (sulfanylmethyl)sulfanyl group in aryl(2‐halopyridin‐3‐yl)methanones 1 by successive treatment with Na2S?9 H2O and chloromethyl sulfides to give aryl{2‐[(sulfanylmethyl)sulfanyl]pyridin‐3‐yl}methanones 2 . In the second step, these were treated with LDA (LiNiPr2) to give 3‐aryl‐2,3‐dihydro‐2‐sulfanylthieno[2,3‐b]pyridin‐3‐ols 3 , which were dehydrated in the last step with SOCl2 in the presence of pyridine to give the desired products. Similarly, thieno[2,3‐c]pyridine and thieno[3,2‐c]pyridine derivatives, 8 and 12 , respectively, can be prepared from aryl(3‐chloropyridin‐4‐yl)methanones 5 and aryl(4‐chloropyridin‐3‐yl)methanones 9 , respectively.  相似文献   

11.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

12.
Herein, we present an innovative, novel, and highly convenient protocol for the synthesis of 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ), which have been delineated from the reaction of 4‐sec‐amino‐2‐oxo‐6‐aryl‐2H‐pyran‐3‐carbonitrile ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) and 4‐sec‐amino‐2‐oxo‐5,6‐dihydro‐2H‐benzo[h]chromene‐3‐carbonitriles ( 9a , 9b , 9c , 9d , 9e ) with 2‐acetylpyridine ( 5 ) through the ring transformation reaction by using KOH/DMF system at RT. The salient feature of this procedure is to provide a transition metal‐free route for the synthesis of asymmetrical 1,3‐teraryls like 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ). The novelty of the reaction lies in the creation of an aromatic ring from 2H‐pyran‐2‐ones and 2H‐benzo[h]chromene‐3‐carbonitriles via two‐carbon insertion from 2‐acetylpyridine ( 5 ) used as a source of carbanion.  相似文献   

13.
The syntheses of nine new 5‐iodosalicylic acid‐based 1,3,4‐oxadiazoline derivatives starting from methyl salicylate are described. These compounds are 2‐[4‐acetyl‐5‐methyl‐5‐(3‐nitrophenyl)‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6a ), 2‐[4‐acetyl‐5‐methyl‐5‐(4‐nitrophenyl)‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6b ), 2‐(4‐acetyl‐5‐methyl‐5‐phenyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl)‐4‐iodophenyl acetate, C19H17IN2O4 ( 6c ), 2‐[4‐acetyl‐5‐(4‐fluorophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate, C19H16FIN2O4 ( 6d ), 2‐[4‐acetyl‐5‐(4‐chlorophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate, C19H16ClIN2O4 ( 6e ), 2‐[4‐acetyl‐5‐(3‐bromophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6f ), 2‐[4‐acetyl‐5‐(4‐bromophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6g ), 2‐[4‐acetyl‐5‐methyl‐5‐(4‐methylphenyl)‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6h ) and 2‐[5‐(4‐acetamidophenyl)‐4‐acetyl‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6i ). The compounds were characterized by mass, 1H NMR and 13C NMR spectroscopies. Single‐crystal X‐ray diffraction studies were also carried out for 6c , 6d and 6e . Compounds 6c and 6d are isomorphous, with the 1,3,4‐oxadiazoline ring having an envelope conformation, where the disubstituted C atom is the flap. The packing is determined by C—H…O, C—H…π and I…π interactions. For 6e , the 1,3,4‐oxadiazoline ring is almost planar. In the packing, Cl…π interactions are observed, while the I atom is not involved in short interactions. Compounds 6d , 6e , 6f and 6h show good inhibiting abilities on the human cancer cell lines KB and Hep‐G2, with IC50 values of 0.9–4.5 µM.  相似文献   

14.
The novel 6‐ethyl‐4‐hydroxy‐2,5‐dioxo‐5,6‐dihydro‐2H‐pyrano[3,2‐c]quinoline‐3‐carboxaldehyde ( 2 ) was efficiently synthesized from Vilsmeier–Haack formylation of 3‐(1‐ethy1‐4‐hydroxy‐2‐oxo‐(1H)‐quinolin‐3‐yl)‐3‐oxopropanoic acid ( 1 ). The aldehyde 2 was allowed to react with some nitrogen nucleophiles producing a variety of hydrazones 3 – 7 . Reaction of aldehyde 2 with hydrazine hydrate and hydroxylamine hydrochloride afforded pyrazole and isoxazole annulated pyrano[3,2‐c]quinoline‐2,5(6H)‐dione, respectively. The reactivity of aldehyde 2 was examined toward some active methylene nitrile, namely, malononitrile, ethyl cyanoacetate, and cyanoacetamide leading to 2‐iminopyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines 10 – 12 , respectively. Also, some novel pyrazolo[4″,3″:5′,6′]pyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines ( 13 , 14 ) and thiazolo[5″,4″:5′,6′]pyrano[2′,3′:4,5]pyrano[3,2‐c]quinolines ( 15 , 16 ) were synthesized. Structures of the new synthesized products were deduced on the basis of their analytical and spectral data.  相似文献   

15.
By reaction with sodium ethoxide and as a function of their structures, 2‐[(1‐alkyl(aryl)‐4‐cyano‐6,7‐dihydro‐5H‐cyclopenta[c ]pyridin‐3‐yl)oxy]acetamides 11 gave 1‐amino‐5‐alkyl(aryl)‐7,8‐dihydro‐6H‐cyclopenta[d ]furo[2,3‐b ]pyridine‐2‐carboxamides 10 and/or 1‐alkyl(aryl)‐3‐amino‐6,7‐dihydro‐5H‐cyclopenta[c ]pyridine‐4‐carbonitriles 12 .  相似文献   

16.
The reaction of aryl(3‐isocyanopyridin‐4‐yl)methanones 1 , easily prepared from commercially available pyridin‐3‐amine, with aryl Grignard reagents gave, after aqueous workup, 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐ols 2 . These rather unstable alcohols were O‐acylated with Ac2O in pyridine in the presence of a catalytic amount of 4‐(dimethylamino)pyridine (DMAP) to afford the corresponding 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐yl acetates 3 in relatively good yields.  相似文献   

17.
One‐pot reaction of cyclic 1,3‐diketones, dimethylformamide dimethylacetal (DMFDMA) and 2‐(1H‐benzo[d ]imidaz‐2‐yl)acetonitrile was found to be a highly selective process leading to 4‐oxo‐1,2,3,4‐tetrahydrobenzo[4,5]imidazo[1,2‐a ]quinolin‐6‐yl cyanides. Optimized reaction conditions using water as solvent at room temperature or under microwave heating allowed high yields of the target products required no additional purification.  相似文献   

18.
A new method was developed for the synthesis of 6,7‐dihydro‐5H‐pyrimido[4,5‐e][1,4]diazepin‐8(9H)‐one derivatives. The key to construct the pyrimido[4,5‐e][1,4]diazepine core is the intramolecular amidation of N‐((4‐amino‐6‐chloropyrimidin‐5‐yl)methyl)‐substituted amino acid esters. This methodology was validated through the preparation of 13 representative 6,7‐dihydro‐5H‐pyrimido[4,5‐e][1,4]diazepin‐8(9H)‐ones in moderate to good yields. J. Heterocyclic Chem., (2011).  相似文献   

19.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

20.
3‐(Bromoacetyl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one was synthesized by the reaction of dehydroacetic acid (DHAA) with bromine in glacial acetic acid. Novel heterocyclic products were synthesized from the reaction of bromo‐DHAA with alkanediamines, phenylhydrazines, ortho‐phenylenediamines, and ortho‐aminobenzenethiol. The obtained new products 3‐(2‐N‐substituted‐acetyl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐ones, 4‐hydroxy‐3‐[1‐hydroxy‐2‐(2‐phenylhydrazinyl)vinyl]‐6‐methyl‐2H‐pyran‐2‐one, 1‐(2,4‐dinitrophenyl)‐7‐methyl‐2,3‐dihydro‐1H‐pyrano[4,3‐c]pyridazine‐4,5‐dione, 3‐(3,4‐dihydroquinoxalin‐2‐yl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one/3‐(3,4‐dihydroquinoxalin‐2‐yl)‐6‐methyl‐2H‐pyran‐2,4(3H)‐dione, 6‐methyl‐3‐(3,4‐dihydroquinoxalin‐2‐yl)‐2H‐pyran‐2,4(3H)‐dione, and (E)‐3‐(2H‐benzo[b][1,4]thiazin‐3(4H)‐ylidene)‐6‐methyl‐2H‐pyran‐2,4(3H)‐dione were fully characterized by IR, 1H and 13C NMR, and mass spectra. J. Heterocyclic Chem., 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号