首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schiff base derivatives of 2-hydroxynaphthylaldehyde were studied by means of 13C and 15N cross-polarization magic angle spinning NMR spectroscopy and deuterium isotope effects on 15N chemical shifts, deltaN(D), in the solid state. DeltaN(D) in the solid state provided evidenced for the presence of a dynamic proton transfer equilibrium in the solid state at the room temperature.  相似文献   

2.
The relative acidities of the cis and trans isomers of a series of 1,5‐oxazaspiro[5.5]undecane derivatives were determined by measuring ΔpK in acid‐base titrations followed by 1 H NMR. Relative structural stabilities were determined by measuring substituent chemical shift and γ‐gauche effects in 13C, 15N, and 17O NMR. Crystallographic characterization of a model spiro[5.5]undecane is presented to support the basicity in solid state. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
We report non‐chiral amino acid residues cis‐ and trans‐1,4‐diaminocyclohexane‐1‐carboxylic acid (cyclo‐ornithine, cO) that exhibit unprecedented stereospecific control of backbone dissociations of singly charged peptide cations and hydrogen‐rich cation radicals produced by electron‐transfer dissociation. Upon collision‐induced dissociation (CID) in the slow heating regime, peptide cations containing trans‐cO residues undergo facile backbone cleavages of amide bonds C‐terminal to trans‐cO. By contrast, peptides with cis‐cO residues undergo dissociations at several amide bonds along the peptide ion backbone. Diastereoisomeric cO‐containing peptides thus provide remarkably distinct tandem mass spectra. The stereospecific effect in CID of the trans‐cO residue is explained by syn‐facially directed proton transfer from the 4‐ammonium group at cO to the C‐terminal amide followed by neighboring group participation in the cleavage of the CO―NH bond, analogous to the aspartic acid and ornithine effects. Backbone dissociations of diastereoisomeric cO‐containing peptide ions generate distinct [bn]+‐type fragment ions that were characterized by CID‐MS3 spectra. Stereospecific control is also reported for electron‐transfer dissociation of cis‐ and trans‐cO containing doubly charged peptide ions. The stereospecific effect upon electron transfer is related to the different conformations of doubly charged peptide ions that affect the electron attachment sites and ensuing N―Cα bond dissociations.  相似文献   

4.
The intramolecular proton transfer in a newly synthesized molecule, 2‐(2′‐hydroxyphenyl)oxazolo[4,5‐b]pyridine (HPOP) is studied using UV‐visible absorption, fluorescence emission, fluorescence excitation and time‐resolved fluorescence spectroscopy. In the ground state, the molecule exists as cis‐ and trans‐enol in all the solvents. However, in dioxane, alcohols, acetonitrile, dimethylformamide and dimethylsulfoxide the keto tautomer is also observed in the ground state. Dual fluorescence is observed in HPOP where the large Stoke shifted emission is due to emission from the excited‐state intramolecular proton transfer product, whereas the other emission is the normal emission from enol form. The fluorescence (both normal and tautomer emission) of HPOP is less than those of corresponding benzoxazole and imidazopyridine derivatives. This reveals that the nonradiative decay becomes more efficient upon substitution of electronegative atom on the charge acceptor group. The pH studies substantiate the conclusion that (unlike in its imidazole analog) the third ground state species is the keto tautomer and not the monoanion. The effect of temperature on cis‐enol‐trans‐enol‐keto equilibrium and the nonradiative deactivation from the excited state are also investigated.  相似文献   

5.
cis‐ and trans‐2‐imino‐1,3‐ and ‐3,1‐perhydrobenzoxazines and the N‐methyl derivatives of the latter were synthesized from the corresponding cyclic 1,3‐amino alcohol with cyanogen bromide. The configurations of the studied compounds were confirmed by 1H and 13C NMR spectra. All trans‐fused compounds exist in biased chair–chair conformations as expected, whereas the cis‐fused 1,3‐benzoxazines attain exclusively the O‐in conformations. The cis‐fused 3,1‐benzoxazines, especially the 1‐methyl‐substituted derivatives, tend to favor the N‐out form, obviously owing to the favorable axial orientation of this N‐methyl. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
A theoretical investigation on the luminescence efficiency of a series of d8 transition‐metal Schiff base complexes was undertaken. The aim was to understand the different photophysics of [M‐salen]n complexes (salen=N,N′‐bis(salicylidene)ethylenediamine; M=Pt, Pd (n=0); Au (n=+1)) in acetonitrile solutions at room temperature: [Pt‐salen] is phosphorescent and [Au‐salen]+ is fluorescent, but [Pd‐salen] is nonemissive. Based on the calculation results, it was proposed that incorporation of electron‐withdrawing groups at the 4‐position of the Schiff base ligand should widen the 3MLCT–3MC gap (MLCT=metal‐to‐ligand charge transfer and MC=metal centered, that is, the dd excited state); thus permitting phosphorescence of the corresponding PdII Schiff base complex. Although it is experimentally proven that [Pd‐salph‐4E] (salph=N,N′‐bis(salicylidene)‐1,2‐phenylenediamine; 4E means an electron‐withdrawing substituent at the 4‐position of the salicylidene) displays triplet emission, its quantum yield is low at room temperature. The corresponding PtII Schiff base complex, [Pt‐salph‐4E], is also much less emissive than the unsubstituted analogue, [Pt‐salph]. Thus, a detailed theoretical analysis of how the substituent and central metal affected the photophysics of [M‐salph‐X] (X is a substituent on the salph ligand, M=Pt or Pd) was performed. Temperature effects were also investigated. The simple energy gap law underestimated the nonradiative decay rates and was insufficient to account for the temperature dependence of the nonradiative decay rates of the complexes studied herein. On the other hand, the present analysis demonstrates that inclusions of low‐frequency modes and the associated frequency shifts are decisive in providing better quantitative estimates of the nonradiative decay rates and the experimentally observed temperature effects. Moreover, spin–orbit coupling, which is often considered only in the context of radiative decay rate, has a significant role in determining the nonradiative rate as well.  相似文献   

7.
Salicylidene Schiff base chelates (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediaminomanganese(III) chloride, (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediaminocobalt(II), N,N′‐bis(salicylidene)‐ethylenediaminocobalt(II), N,N′‐bis(salicylidene)ethylenediaminonickel(II), and N,N′‐bis(salicylidene)ethylenediaminoaquacobalt(II), as well as (R,R)‐(–)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)1,2‐cyclohexanediamine, were kinetically examined as antioxidants in the scavenging of tert‐butylperoxyl radical (tert‐butylOO?). Absolute rate constants and corresponding Arrhenius parameters were determined for reactions of tert‐butylOO? with these chelates in the temperature range ?52.5 to ?11°C. High reactivity of tert‐butylOO? with Mn(III) and Co(II) salicylidene Schiff base chelates was established using a kinetic electron paramagnetic resonance method. These salicylidene Schiff base chelates react in a 1:1 stoichiometric fashion with tert‐butylOO? without free radical formation. Ultraviolet–visible spectrophotometry and differential pulse voltammetry established that the rapid removal rate of tert‐butylOO? by these chelates is the result of Mn(III) oxidation to Mn(IV) and Co(II) oxidation to Co(III) by tert‐butylOO?. It is concluded that removal of alkylperoxyl radical by Mn(III) and Co(II) salicylidene Schiff base chelates may partially account for their biological activities. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 431–439, 2007  相似文献   

8.
Ammonolysis of 1,2‐bis[dichloro(methyl)silyl]ethane afforded a crystalline tricyclic silazane along with polymeric material. The crystalline material could be isolated in pure state. It was analyzed by 1H, 13C, 15N and 29Si NMR spectroscopy in solution, by 13C, 15N and 29Si MAS NMR spectroscopy in the solid state, as well as by single‐crystal and powder X‐ray diffraction. The title compound exists as a single isomer in solution, whereas in the solid state the presence of several modifications is indicated, in particular by the solid‐state MAS NMR spectra.  相似文献   

9.
A predominantly trans‐1,2‐disubstituted ethane system – N,N,N‐trimethyl‐(3,3‐dimethylbutyl)ammonium iodide – is of particular interest for conformational analysis, because it contains both an organic and a highly polar substituent, making it soluble and thus applicable to study in a large variety of solvents. The fraction of the trans conformer of this molecule in a wide range of protic and aprotic solvents was determined by the nuclear magnetic resonance proton couplings to be approximately 90%, in contrast to the previously assumed 100%. The consistently strong preference of the trans conformation should establish N,N,N‐trimethyl‐(3,3‐dimethylbutyl)ammonium iodide as a possibly useful ‘trans‐standard’ in conformational analysis, much more so than 1,2‐ditert‐butylethane, which has a poor solubility in many solvents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The effects of protonation and hydrogen bonding in linear Schiff bases obtained from n-butylamine with butyraldehyde, crotonaldehyde, sorbaldehyde and all-trans-retinal were studied by means of 15N and 13C NMR. The protonation-induced chemical shifts (Δδ) are an order of magnitude larger for 15N than for 13C. For 15N, this effect was found to increase with the extent of conjugation, culminating in the retinylideneimine (Δδ = ?146 ppm), which constitutes a model for the study of the structure of the Schiff base linkage in visual pigments and related systems. Theoretical calculations of protonation-induced Δδ values based on MINDO/ 3 are in agreement with experimental results.  相似文献   

11.
The deuterium isotope effect on the 13C NMR chemical shifts of some α-2-hydroxyaryl-N-phenylnitrones (Schiff base N-oxides) was studied. The existence of an intramolecular hydrogen bond with the proton localized on the phenolic oxygen atom was evidenced. Exceptionally large isotope effects ΔC-2(D) and ΔC-α(D) suggest that the substitution of the proton of the OH group by deuterium leads to a weakening of the hydrogen bond and some conformational changes in the molecule. This conclusion was drawn on the basis of a comparison of the deuterium isotope effects of Schiff base N-oxides and parent Schiff bases. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Several di‐nitrogen Schiff bases were synthesized through the condensation of 2‐pyridinecarboxaldehyde with primary amines. The Schiff bases as ligands coordinated with methyltrioxorhenium (MTO) smoothly to afford the correspondent complexes which were characterized by IR, 1H NMR, 13C NMR, MS and elemental analysis. One of the complexes was analyzed by X‐ray crystallography as well. The results revealed that the complexes display distorted octahedral geometry in the solid state with a trans‐position of Schiff base. Catalytic results indicated that the complexes as catalysts increased the selectivity of epoxides remarkably compared with MTO in the epoxidation of alkenes with 30% hydrogen peroxide as oxidant and the increasing rate depended on the structure of the Schiff base ligands of the complexes. The results indicated that the stronger the donating ability of the ligand, the higher selectivity of epoxides the complex gave in the epoxidation of alkenes with 30% hydrogen peroxide as oxidant. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The development of nuclear spins hyperpolarization, and the search for molecules that can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. In this work we present a detailed study of SABRE SHEATH (signal amplification by reversible exchange in shield enabled alignment transfer to heteronuclei) experiments on 15N2-azobenzene. In SABRE SHEATH experiments the nuclear spins of the target are hyperpolarized through transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process. Azobenzene exists in two isomers, trans and cis. We show that all nuclear spins in cis-azobenzene can be efficiently hyperpolarized by SABRE at suitable magnetic fields. Enhancement factors (relative to 9.4 T) reach up to 3000 for 15N spins and up to 30 for the 1H spins. We compare two approaches to observe either hyperpolarized magnetization of 15N/1H spins, or hyperpolarized singlet order of the 15N spin pair. The results presented here will be useful for further experiments in which hyperpolarized cis-15N2-azobenzene is switched by light to trans-15N2-azobenzene for storing the produced hyperpolarization in the long-lived spin state of the 15N pair of trans-15N2-azobenzene.  相似文献   

14.
A group of novel Schiff base derivatives were synthesized and characterized by NMR spectra, X-ray, mass and CHN analysis. An excited state intramolecular proton transfer (ESIPT) process in hydroxy Schiff base (SB4) has been studied using emission spectroscopy and it was detected that the two distinct ground state isomers of I and II are responsible for the emission. The comparison of the emission wavelength in hydrocarbon solvent strongly supports that trans enol form predominates over the cis enol form for Schiff base (SB4). With increasing base concentration of the solutions of hydroxy substituted Schiff bases (SB4 and SB5), two isobestic points are found which confirm the equilibrium among the trans enol form, anion and the cis enol form. The fluorescence of (SB4) quenched markedly with the gradual addition of Cu(2+) but the fluorescence properties of (SB5) was influenced by other metal ions. Therefore Schiff base (SB5) can be used as a new fluorescence sensor to detect the quantity of Cu(2+) ion in any sample solution depending on the relative intensity change. DFT calculations on energy, dipole moment, charge distribution of the rotamers in the ground and excited states of the Schiff base derivatives were performed and discussed. PES calculation indicates that the energy barrier for the interconversion of two rotamers is too high in the excited state than the ground state.  相似文献   

15.
A series of compounds containing 5‐(2‐aminobenzylidene)‐2,3‐dimethyl‐3,5‐dihydro‐4H‐imidazol‐4‐one ( o ‐ABDI ) as the core chromophore with a seven‐membered‐ring N?H‐type intramolecular hydrogen bond have been synthesized and characterized. The acidity of the N?H proton and thus the hydrogen‐bond strength can be fine‐tuned by replacing one of the amino hydrogen atoms by a substituent R, the acidity increasing with increasing electron‐withdrawing strength of R, that is, in the order H<COCH3<COPh<Tosyl<COCF3. The tosyl and trifluoroacetyl derivatives undergo ultrafast, irreversible excited‐state intramolecular proton transfer (ESIPT) that results in proton‐transfer emission solely in the red region. Reversible ESIPT, and hence dual emission, involving the normal and proton‐transfer tautomers was resolved for the acetyl‐ and benzyl‐substituted counterparts. For o ‐ABDI , which has the weakest acidity, ESIPT is prohibited due to its highly endergonic reaction. The results clearly demonstrate the harnessing of ESIPT by modifying the proton acidity and hydrogen‐bonding strength in a seven‐membered‐ring intramolecular hydrogen‐bonding system. For all the compounds studied, the emission quantum yields are weak (ca. 10?3) in dichloromethane, but strong in the solid form, ranging from 3.2 to 47.4 %.  相似文献   

16.
Reaction of copper(I) thiocyanate and triphenylphosphane with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, (1); systematic name (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]}, C20H18N4O4, in a 1:1:1 molar ratio in acetonitrile resulted in the formation of the complex {(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}(thiocyanato‐κN)(triphenylphosphane‐κP)copper(I)], [Cu(NCS)(C20H18N4O4)(C18H15P)] or [Cu(NCS)(Nca2en)(PPh3)], (2). The Schiff base and copper(I) complex have been characterized by elemental analyses, IR, electronic and 1H NMR spectroscopy, and X‐ray crystallography [from synchrotron data for (1)]. The molecule of (1) lies on a crystallographic inversion centre, with a trans conformation for the ethylenediamine unit, and displays significant twists from coplanarity of its nitro group, aromatic ring, conjugated chain and especially ethylenediamine segments. It acts as a bidentate ligand coordinating via the imine N atoms to the CuI atom in complex (2), in which the ethylenediamine unit necessarily adopts a somewhat flattened gauche conformation, resulting in a rather bowed shape overall for the ligand. The NCS ligand is coordinated through its N atom. The geometry around the CuI atom is distorted tetrahedral, with a small N—Cu—N bite angle of 81.56 (12)° and an enlarged opposite angle of 117.29 (9)° for SCN—Cu—P. Comparisons are made with the analogous Schiff base having no nitro substituents and with metal complexes of both ligands.  相似文献   

17.
The reaction of the di‐lithiated oxamide of 1 with two equivalents of SnCl2 provided the tin trans‐oxamide 3 . In solution, spectroscopic analysis suggests exclusively the formation of a trans‐oxamide (trans‐ 3 ). However, the solid state shows an atypical cis‐oxamide (cis‐ 3 ), where the oxamide fragment acts as an anti‐Janus head ligand. An 119Sn‐NMR variable temperature experiment ([D8]THF) of the trans‐oxamide (trans‐ 3 ) was performed however, at lower temperature no additional signal was observed, which confirmed the absence of a dynamic equilibrium. Dispersion‐corrected density functional calculations revealed that the cis conformation of this tin(II) oxamide complex is more stable than the trans isomer by 1.4 kcal · mol–1.  相似文献   

18.
The 15N‐labelled iron dinitrogen complexes trans‐[FeH(N2)(PP)2]+[BPh4]? (PP = dppe, depe, dmpe) and cis‐[FeH(N2)(PP3)]+[BPh4]? were prepared in situ by exchange of unlabelled coordinated dinitrogen with 15N2. 15N NMR chemical shifts and coupling constants are reported. The 15N spectra exhibit separate signals for the metal‐bound and terminal nitrogen atoms of the coordinated N2. The 15N resonances display 15N, 15N coupling as well as 31P, 15N coupling and long‐range 15N, 1H coupling when there is a metal‐bound hydrido ligand. Exchange between free and coordinated dinitrogen was monitored by magnetization transfer between 15N‐labelled sites using an inversion–transfer–recovery experiment. Exchange between the metal‐bound and terminal nitrogen atoms of coordinated N2 was also monitored by magnetization transfer and this could proceed by N2 dissociation or by an intramolecular process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Ab initio EOM‐CCSD calculations were performed to determine 19F,1H, 19F,15N and 1H,15N spin–spin coupling constants in model complexes FH–NH3 and FH–pyridine as a function of the F—H and F—N distances. The absolute value of 1J(F,H) decreases and that of 1hJ(H,N) increases rapidly along the proton‐transfer coordinate, even in the region of the proton‐shared F—H—N hydrogen bond. In contrast, 2hJ(F,N) remains essentially constant in this region. These results are consistent with the recently reported experimental NMR spectra of FH–collidine which show that 1hJ(H,N) increases and 1J(F,H) decreases, while 2hJ(F,N) remains constant as the temperature of the solution decreases. They suggest that the FH–collidine complex is stabilized by a proton‐shared hydrogen bond over the range of experimental temperatures investigated, being on the traditional side of quasi‐symmetric at high temperatures, and on the ion‐pair side at low temperatures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
The (E) isomer in mixtures of (E) and (Z) 1,3‐hexadiene was polymerized with the system CoCl2(PiPrPh2)2‐MAO, a highly active and stereospecific catalyst for the preparation of 1,2 syndiotactic polybutadiene. A new crystalline polymer with a melting point of 109 °C was obtained. The polymer was characterized by IR, NMR (13C, 1H in solution and 13C in the solid‐state), X‐ray diffraction, DSC, GPC and it was found to have a trans‐1,2 syndiotactic structure with a 5.18 ± 0.04 Å fiber periodicity. Since only the (E) isomer was polymerized, at the end of the reaction we were able to separate the (Z) isomer, which was ultimately polymerized with CpTiCl3‐MAO at low temperature, obtaining a low molecular weight, stereoregular polymer that, characterized by IR and NMR methods, was found to exhibit a cis‐1,2 syndiotactic structure, never reported before. Molecular mechanics calculations were carried out on the trans‐1,2 syndiotactic polymer and structural models consistent with the X‐ray diffraction data are proposed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5339–5353, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号