首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We will prove that some so‐called union theorems (see [2]) are equivalent in ZF0 to statements about the transitive closure of relations. The special case of “bounded” union theorems dealing with κ‐hereditary sets yields equivalents to statements about the transitive closure of κ‐narrow relations. The instance κ = ω1 (i. e., hereditarily countable sets) yields an equivalent to Howard‐Rubin's Form 172 (the transitive closure Tc(x) of every hereditarily countable set x is countable). In particular, the countable union theorem (Howard‐Rubin's Form 31) and, a fortiori, the axiom of countable choice imply Form 172.  相似文献   

2.
J.E. Graver and M.E. Watkins, Memoirs Am. Math. Soc. 126 (601) ( 5 ) established that the automorphism group of an edge‐transitive, locally finite map manifests one of exactly 14 algebraically consistent combinations (called types) of the kinds of stabilizers of its edges, its vertices, its faces, and its Petrie walks. Exactly eight of these types are realized by infinite, locally finite maps in the plane. H.S.M. Coxeter (Regular Polytopes, 2nd ed., McMillan, New York, 1963) had previously observed that the nine finite edge‐transitive planar maps realize three of the eight planar types. In the present work, we show that for each of the 14 types and each integer n ≥ 11 such that n ≡ 3,11 (mod 12), there exist finite, orientable, edge‐transitive maps whose various stabilizers conform to the given type and whose automorphism groups are (abstractly) isomorphic to the symmetric group Sym(n). Exactly seven of these types (not a subset of the planar eight) are shown to admit infinite families of finite, edge‐transitive maps on the torus, and their automorphism groups are determined explicitly. Thus all finite, edge‐transitive toroidal maps are classified according to this schema. Finally, it is shown that exactly one of the 14 types can be realized as an abelian group of an edge‐transitive map, namely, as ?n × ?2 where n ≡ 2 (mod 4). © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 1–34, 2001  相似文献   

3.
Generalizations of Boolean elements of a BL‐algebra L are studied. By utilizing the MV‐center MV(L) of L, it is reproved that an element xL is Boolean iff xx * = 1 . L is called semi‐Boolean if for all xL, x * is Boolean. An MV‐algebra L is semi‐Boolean iff L is a Boolean algebra. A BL‐algebra L is semi‐Boolean iff L is an SBL‐algebra. A BL‐algebra L is called hyper‐Archimedean if for all xL, xn is Boolean for some finite n ≥ 1. It is proved that hyper‐Archimedean BL‐algebras are MV‐algebras. The study has application in mathematical fuzzy logics whose Lindenbaum algebras are MV‐algebras or BL‐algebras. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Let v, k be positive integers and k ≥ 3, then Kk = : {v: vk} is a 3‐BD closed set. Two finite generating sets of 3‐BD closed sets K4 and K5 are obtained by H. Hanani [5] and Qiurong Wu [12] respectively. In this article we show that if v ≥ 6, then vB3(K,1), where K = {6,7,…,41,45,46,47,51,52,53,83,84}\{22,26}; that is, we show that K is a generating set for K6. Finally we show that vB3(6,20) for all vK\{35,39,40,45}. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 128–136, 2008  相似文献   

5.
6.
The class of graphs that are 2‐path‐transitive but not 2‐arc‐transitive is investigated. The amalgams for such graphs are determined, and structural information regarding the full automorphism groups is given. It is then proved that a graph is 2‐path‐transitive but not 2‐arc‐transitive if and only if its line graph is half‐arc‐transitive, thus providing a method for constructing new families of half‐arc‐transitive graphs. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 225–237, 2013  相似文献   

7.
We introduce the concept of the primitivity of independent set in vertex‐transitive graphs, and investigate the relationship between the primitivity and the structure of maximum independent sets in direct products of vertex‐transitive graphs. As a consequence of our main results, we positively solve an open problem related to the structure of independent sets in powers of vertex‐transitive graphs. © 2010 Wiley Periodicals, Inc. J Graph Theory 67: 218‐225, 2011  相似文献   

8.
Recent research has shown that in some practically relevant situations like multiphysics flows (Galvin et al., Comput Methods Appl Mech Eng, to appear) divergence‐free mixed finite elements may have a significantly smaller discretization error than standard nondivergence‐free mixed finite elements. To judge the overall performance of divergence‐free mixed finite elements, we investigate linear solvers for the saddle point linear systems arising in ((Pk)d,P k‐1disc) Scott‐Vogelius finite element implementations of the incompressible Navier–Stokes equations. We investigate both direct and iterative solver methods. Due to discontinuous pressure elements in the case of Scott‐Vogelius (SV) elements, considerably more solver strategies seem to deliver promising results than in the case of standard mixed finite elements such as Taylor‐Hood elements. For direct methods, we extend recent preliminary work using sparse banded solvers on the penalty method formulation to finer meshes and discuss extensions. For iterative methods, we test augmented Lagrangian and \begin{align*}\mathcal{H}\end{align*} ‐LU preconditioners with GMRES, on both full and statically condensed systems. Several numerical experiments are provided that show these classes of solvers are well suited for use with SV elements and could deliver an interesting overall performance in several applications.© 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

9.
Deciding whether a digraph contains a pair of arc‐disjoint in‐ and out‐branchings rooted at a specified vertex is a well‐known NP‐complete problem (as proved by Thomassen, see 2 ). This problem has been shown to be polynomial time solvable for semicomplete digraphs 2 and for quasi‐transitive digraphs 6 . In this article, we study the problem for locally semicomplete digraphs. We characterize locally semicomplete digraphs that contain a pair of arc‐disjoint in‐ and out‐branchings rooted at a specified vertex. Our proofs are constructive and imply the existence of a polynomial time algorithm for finding the desired branchings when they exist. Our results generalizes those from 2 for semicomplete digraphs and solves an open problem from 4 .  相似文献   

10.
A graph of order n is p ‐factor‐critical, where p is an integer of the same parity as n, if the removal of any set of p vertices results in a graph with a perfect matching. 1‐factor‐critical graphs and 2‐factor‐critical graphs are factor‐critical graphs and bicritical graphs, respectively. It is well known that every connected vertex‐transitive graph of odd order is factor‐critical and every connected nonbipartite vertex‐transitive graph of even order is bicritical. In this article, we show that a simple connected vertex‐transitive graph of odd order at least five is 3‐factor‐critical if and only if it is not a cycle.  相似文献   

11.
A noncomplete graph Γ is said to be (G, 2)‐distance transitive if G is a subgroup of the automorphism group of Γ that is transitive on the vertex set of Γ, and for any vertex u of Γ, the stabilizer is transitive on the sets of vertices at distances 1 and 2 from u. This article investigates the family of (G, 2)‐distance transitive graphs that are not (G, 2)‐arc transitive. Our main result is the classification of such graphs of valency not greater than 5. We also prove several results about (G, 2)‐distance transitive, but not (G, 2)‐arc transitive graphs of girth 4.  相似文献   

12.
In [10] it is claimed that the set of predicate tautologies of all complete BL‐chains and the set of all standard tautologies (i. e., the set of predicate formulas valid in all standard BL‐algebras) coincide. As noticed in [11], this claim is wrong. In this paper we show that a complete BL‐chain B satisfies all standard BL‐tautologies iff for any transfinite sequence (ai: iI) of elements of B , the condition ∧iI (a2i ) = (∧iI ai)2 holds in B . (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We give a unified approach to analyzing, for each positive integer s, a class of finite connected graphs that contains all the distance transitive graphs as well as the locally s‐arc transitive graphs of diameter at least s. A graph is in the class if it is connected and if, for each vertex v, the subgroup of automorphisms fixing v acts transitively on the set of vertices at distance i from v, for each i from 1 to s. We prove that this class is closed under forming normal quotients. Several graphs in the class are designated as degenerate, and a nondegenerate graph in the class is called basic if all its nontrivial normal quotients are degenerate. We prove that, for s≥2, a nondegenerate, nonbasic graph in the class is either a complete multipartite graph or a normal cover of a basic graph. We prove further that, apart from the complete bipartite graphs, each basic graph admits a faithful quasiprimitive action on each of its (1 or 2) vertex‐orbits or a biquasiprimitive action. These results invite detailed additional analysis of the basic graphs using the theory of quasiprimitive permutation groups. © 2011 Wiley Periodicals, Inc. J Graph Theory 69:176‐197, 2012  相似文献   

14.
A concept called P3BD‐closed set is introduced to describe a set of positive integers which is both PBD‐closed and 3BD‐closed. The theory of P3BD‐closure is developed and a few examples of P3BD‐closed sets are exhibited. In the process, the existence spectrum of OLIQ ?s (overlarge sets of idempotent quasigroups with their own idempotent orthogonal mates) is almost determined. A pair of orthogonal OLIQ ?s is shown to asymptotically exist. The existence of OLIQ s (overlarge sets of idempotent quasigroups with their own orthogonal mates not necessarily specifying idempotency) is also established with only 10 possible exceptions remained. Copyright © 2011 Wiley Periodicals, Inc. J Combin Designs 19:407‐421, 2011  相似文献   

15.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

16.
The present paper investigates arc‐transtive graphs in terms of their stability, and shows, somewhat contrary to expectations, that the property of instability is not as rare as previously thought. Until quite recently, the only known example of a finite, arc‐transitive vertex‐determining unstable graph was the underlying graph of the dodecahedron. This paper illustrates some methods for constructing finite arc‐transitive unstable graphs, and three infinite families of such graphs are given as applications. © 2001 John Wiley & Sons, Inc. J Graph Theory 38: 95–110, 2001  相似文献   

17.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L‐list colorable if for a given list assignment L = {L(v): v: ∈ V}, there exists a proper acyclic coloring ? of G such that ?(v) ∈ L(v) for all vV. If G is acyclically L‐list colorable for any list assignment with |L (v)|≥ k for all vV, then G is acyclically k‐choosable. In this article, we prove that every planar graph G without 4‐ and 5‐cycles, or without 4‐ and 6‐cycles is acyclically 5‐choosable. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 245–260, 2007  相似文献   

18.
Let G be a connected, nonbipartite vertex‐transitive graph. We prove that if the only independent sets of maximal cardinality in the tensor product G × G are the preimages of the independent sets of maximal cardinality in G under projections, then the same holds for all finite tensor powers of G, thus providing an affirmative answer to a question raised by Larose and Tardif (J Graph Theory 40(3) (2002), 162–171). © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 295‐301, 2009  相似文献   

19.
Let n be an integer and q be a prime power. Then for any 3 ≤ nq?1, or n=2 and q odd, we construct a connected q‐regular edge‐but not vertex‐transitive graph of order 2qn+1. This graph is defined via a system of equations over the finite field of q elements. For n=2 and q=3, our graph is isomorphic to the Gray graph. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 249–258, 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号