首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
A new reagent system using rhodamine‐B dye for the determination of selenium is described. The method is based on the reaction of selenium with acidified potassium iodide to liberate iodine. The liberated iodine bleaches the pink colour rhodamine‐B, which is measured at 555 nm. Beer's law is obeyed over the concentration range of 1–10 μg of selenium final solution volume of 25 mL (0.04–0.4 ppm) and the apparent molar absorptivity and Sandell's sensitivity was found to be 1.96× 105 l mol?1 cm?1 and 0.0004 μg cm?2, respectively. The method is simple, sensitive, and selective and is satisfactorily applied to micro‐level determination of selenium in various environmental and cosmetic samples.  相似文献   

2.
A highly sensitive spectrophotometric method for the determination of nitrite in water and soil has been developed. The reaction of nitrite with acidified potassium iodide to liberate iodine which oxidizes leuco‐crystal violet (LCV) to form crystal violet having absorption maxima at 590 nm forms the bases of this method. In aqueous medium the system obeys Beer's law in the range of 0.1 to 1.0 μg per 25 mL (0.004–0.04 ppm), while in an extractive system the range is 0.025–0.25 μg in 100 mL (0.00025–0.0025 ppm). The molar absorptivity and Sandell's sensitivity were found to be 1.54 × 106 1 mol?1 cm?1 and 44 pg cm?2, respectively.  相似文献   

3.
A sensitive reagent system is proposed for the determination of cyanide and hydrogen cyanide in various environmental samples. The method is based on the conversion of cyanide into cyanogen bromide followed by its reaction with pyridine to form glutaconic aldehyde. The glutaconic aldehyde so formed is coupled with p‐aminoacetophenone forming yellow‐orange polymethine dye measured at 445 nm. The colour system obeys Beer's law in the range of 0.01–0.16 ppm of cyanide inaqeous phase and 0.002–0.03 ppm in extracting system. The molar absorptivity and Sandell's sensitivity were found to be 6.51 × 105 l mol?1 cm?1 and 0.0001 μg cm?2, respectively. The method has been successfully applied for the determination of cyanide in air, industrial effluent, biological samples, and in the pesticide acrylonitrile.  相似文献   

4.
Results of a thorough study and application of leucocrystal violet for the determination of arsenic in parts per million (ppm) levels in environmental and biological samples is described here. The proposed method is based on the reaction of arsenic with potassium iodate to liberate iodine. The liberated iodine selectively oxidises leucocrystal violet to form crystal violet dye in the presence of sodium hydroxide. The dye formed shows maximum absorbance at 592 nm. The detection limit of arsenic is 0.002 μgmL?1 and the method obeys Beer's law over the concentration range of 0.1 μg - 1.0 μg of per 25 mL of final solution (0.004–0.04 ppm). The molar absorptivity was found to be 1.49 × 106 L mol?1 cm?1. The proposed method was successfully applied for the determination of arsenic in various environmental and biological samples. The results are in good agreement with the standard reported method.  相似文献   

5.
A new simple and sensitive and selective spectrophotometric method has been developed for the determination of ascorbic acid (AA) at trace level using a new reagent, leuco malachite green (LMG). AAreacts with potassium iodide‐iodate solution under acidic conditions to liberate iodine and the liberated iodine selectively oxidizes LMG to MG dye. The colour of the dye was measured at 620 nm. Beer's law is obeyed over the concentration range of 0.8–8 iμg μAA per 25 mL of final solution (0.032–0.32 ppm). The apparent molar absorptivity and Sandell's sensitivity of the method were found to be 2.98 × 105 l mol−1 cm−1, 0.0042 μg cm−2, and respectively. Statistical treatment of the experimental results indicates that the method is precise and accurate. The method is free from interference of common ions and many of the ingredients commonly found in pharmaceuticals. The reliability of the method was established by parallel determination against Leucocrystal violet (LCV) method. The method described was satisfactorily applied for the determination of AA in fruit juices, pharmaceuticals and biological samples.  相似文献   

6.
A new and highly sensitive spectrophotometric method is developed for the determination of sub ppm levels of the widely used organophosphorus insecticide dichlorvos. The method is based on alkaline hydrolysis of dichlorvos to dichloroacetaldehyde followed by coupling with diphenyl semicarbazide (DPC) in alkaline medium. The absorption maxima of the wine red dye compound formed is measured at 490 nm. Beer's law is obeyed over the concentration range of 4.3 to 34 μg in a final solution volume of 25 mL (0.18–1.36 ppm). The molar absorptivity, Sandell's sensitivity and correlation coefficient were found to be 2.9 × 105 l mole?1 cm?1, 0.013 μg cm?2 and 0.9999, respectively. The standard deviation and relative standard deviation were found to be ± 0.007 and 1.90%, respectively. The lower limit of detection is 0.04 μg. The method is simple, sensitive and free from interferences of other pesticides and diverse ions. Other organophosphorous pesticides do not interfere with the proposed method. The method has been satisfactorily applied to the determination of dichlorvos in environmental and agricultural samples.  相似文献   

7.
A new reagent, benzyloxybenzaldehydethiosemicarbazone (BBTSC) was synthesized and a new method was developed for the simple, highly selective and extractive spectrophotometric determination of palladium(II) with BBTSC at wave length 365 nm. The metal ion formed a yellow colored complex with BBTSC in acetate buffer of pH 5.0, which was easily extractable into cyclohexanol with 1:1 (Metal: Ligand) composition. The method obeys Beer's law in the range of 5–60 ppm. The molar absorptivity and Sandell's sensitivity were found to be 0.4 × 104 Lt. mol?1 cm?1 and 0.02661 μg cm?2, respectively. The correlation co‐efficient of the Pd(II)‐BBTSC complex was 0.9657, which indicated an excellent linearity between the two variables. The repeatability of the method was checked by finding the relative standard deviation (RSD) (n = 10), which was 0.321% and its detection limit 0.016875 μg.mL?1. The instability constant of the method was calculated by Asmus' method as 3.5714 × 10?4. The interfering effect of various cations and anions were also studied. The proposed method was successfully applied for the determination of palladium(II) in synthetic and water samples. The results were compared with those obtained using an atomic absorption spectrophotometer, testing the validity of the method.  相似文献   

8.
Rutherford backscattering spectrometry with a 2.1-meV He2+ion beam is used to measure the diffusion of iodine into polyamic acid and polyimide films. The iodine diffusion coefficient D decreases from its initial value of about 2X10?13cm2/s in polyamic acid to approximately 1.4 × 10?15cm2/s in partially cured polyimide, but then increases to a value of nearly 1.5 × 10?14 cm2/s in fully cured polyimide. This dramatic increase in D cannot be attributed to the “in-plane” biaxial orientation of the polyimide molecules since indential D's were found with isotropic specimens. Microvoids less than 2 nm in size caused by water and carbon dioxide formation during imidization may, however, give rise to the observed behavior. The results demonstrate that Rutherford backscattering spectrometry with its excellent depth resolution (better than 30 nm) and good sensitivity (50 ppm iodine can be detected) is very useful for measuring the diffusion of slowly diffusing species in glassy polymers.  相似文献   

9.
To the determination of trace amount of Cd(II) present in food and water samples, a selective and extractive spectrophotometric method were developed with 2,6‐diacetylpyridine‐bis‐4‐phenyl‐3‐thiosemicarbazone as a complexing agent. The yellowish orange colored metal complex, Cd(II)‐2,6‐DAPBPTSC with 1:1 (M:L) composition was extracted in to cyclohexanol at pH 9.5 and was shows maximum absorbance at λmax 390 nm. This method obeys Beer's law in the range of 1.12‐11.25 ppm with 0.972 correlation coefficient of Cd(II)‐2,6‐DAPBPTSC complex, which is indicates linearity between the two variables. The molar absorptivity and sandell's sensitivity were found to be 6.088 × 104 L mol?1 cm?1 and 0.0018 μg cm?2, respectively. The instability constant calculated from Asmus' method (1.447 × 10?4)at room temperature. The precision and accuracy of the method were checked by relative standard deviation (n = 5), 0.929 and its detection limit, 0.0060 μg mL?1. The interfering effects of various cations and anions were also studied. The proposed method was successfully applied to the determination of Cd(II) in foods and water samples, and was evaluated its performance in terms of Student ‘t’ test and Variance ‘f’ test, which indicates the significance of present method. The inter comparison of the experimental values, using atomic absorption spectrometer (AAS), was also repoted.  相似文献   

10.
《Analytical letters》2012,45(15):2974-2991
Abstract

A simple and sensitive spectrophotometric method for the determination of nitrogen dioxide in ambient air and nitrite/nitrate in water and soil samples has been developed. Nitrogen dioxide in air has been fixed as nitrite ion using alkaline sodium arsenite as absorbing medium. The method is based on the reaction of nitrite with aminophenyl benzimidazole in acid medium to form diazonium ion, which is coupled with N‐(1‐naphthyl)ethylenediamine dihydrochloride to form an azo dye with an absorption maximum at 555 nm in aqueous phase. The method obeys Beer's law in the concentration range 0–10 µg of nitrite in 25 ml solution. The molar absorptivity has been found to be 6.3×104 l mol?1 cm?1. The dye can be extracted quantitatively into isoamyl alcohol under alkaline condition and the addition of methanolic hydrochloric acid restores the original dye colour. Beer's law is obeyed in the concentration range 0–2 µg of nitrite with a detection limit of 0.009 µg. The effect of interfering species has been studied and the developed method has been applied to determine trace levels of nitrogen dioxide in ambient air and the results have been compared with the standard method. It is also applied to measure the nitrite/nitrate levels of surface and ground water samples collected from lakes, tube wells as well as soil samples.  相似文献   

11.
A validated, selective and sensitive spectrophotometric method has been developed for the determination of labetalol hydrochloride in commercial dosage forms. The method is based on the coupling reaction of positive diazonium ion of 4‐aminobenzenesulfonic acid with phenolate ion of labetalol to form a colored azo compound which absorbs maximally at 395 nm. Under the optimized experimental conditions, the color is stable up to 2 h and Beer's law is obeyed in the concentration range of 0.8–17.6 μg mL?1 with a linear regression equation of A = 4.84 × 10?4 + 7.864 × 10?2 C and coefficient of correlation, r = 0.9999. The molar absorptivity and Sandell's sensitivity are found to be 2.874 × 104 L mol?1 cm?1 and 0.013 μg cm?2 per 0.001‐absorbance unit, respectively. The limits of detection and quantitation of the proposed method are 0.08 and 0.23 μg mL?1, respectively. The intra‐day and inter‐day precision variation and accuracy of the proposed method is acceptable with low values of standard analytical error. The recovery results obtained by the proposed method in drug formulations are acceptable with mean percent recovery ± RSD of 99.97 ± 0.52 ‐ 100.03 ± 0.63%. The results of the proposed method compared with those of Bilal's spectrophotometric method indicated excellent agreement with acceptable true bias of all samples within ± 2.0%.  相似文献   

12.
Abstract

Nitrite ion at low concentration is determined spectrometrically by diazotization of p-aminobenzo-phenone and coupling of the resulting diazonium cation with N-(1-naphthy1)-ethylene-diamine to form a reddish-violet coloured water-soluble azo dye with maximum absorption at 555 nm. The method is suitable for the determination of nitrite over the range of 0.04–1.00 ppm. Beer's law is obeyed over this range of concentrations. The observed molar absorptivity and Sandell's sensitivity of the azo dye are 7.0 × 104 mol?1 cm?1 and 6.5 × 10?4 μg cm?2, respectively. Interferences due to other ions were studied to test the selectivity.  相似文献   

13.
New synthesized reagent 2,6‐diacetylpyridine bis‐4‐phenyl‐3‐thiosemicarbazone (2,6‐DAPBPTSC) is proposed as a sensitive and selective analytical reagent for the extractive spectrophotometric determination of cobalt(II). Cobalt(II) forms a reddish brown colored complex with 2,6‐DAPBPTSC, which is extracted into isoamylalcohol, under optimum conditions. The maximum absorption of the isoamylalcohol extract is measured at 400 nm. Beer's law is applied in the range 0.6‐6.0 ppm of cobalt(II). The molar absorptivity and Sandell's sensitivity of the complex is calculated as 2.2 × 104 L mol?1 cm?1 and 2.68 × 10?3 μg cm?2, respectively. An adequate linearity with a correlation coefficient value of 0.969 is obtained for the Co(II)‐2,6‐DAPBPTSC complex. The instability constant of the complex, calculated from Asmus' method is 3.75 × 10?4 The precision and accuracy of the method is checked with calculation of relative standard deviation (n = 5), 0.388 and the detection limit a value is 0.0028 μg mL?1. The method is successfully employed for the determination of cobalt(II) in real samples, such as vegetables, soil, water samples, standard alloy samples, and the performance of the present method was evaluated in terms of Student ‘t’ test and Variance ‘f’ test, which indicates the significance of the present method is an inter comparison of the experimental values, using atomic absorption spectrometer (AAS).  相似文献   

14.
Salicylaldehyde thiosemicarbazone instantaneously forms a green complex with copper(II) in the optimum pH range 5–7. A fivefold molar excess of the reagent is sufficient for the full development of the color. Beer's law is obeyed in the range 0.5–6.0 ppm of copper. The optimum concentration range as evaluated by Ringbom's method is 1.4–5.8 ppm. At 375 nm the sensitivity of the reaction and the molar absorptivity are 0.006 μg cm?2 and 9.2 × 103 liters mol?1 cm?1, respectively. The effects of pH, reagent concentration, time, order of addition of the solutions, and the interference of various ions were investigated. Copper in plant samples, containing zinc, iron, and manganese, was determined.  相似文献   

15.
Novel poly-Schiff bases (PSB's) that contain trans-1,2-bis(9-carbazolyl)cyclobutane(DCZB) units were synthesized by the direct polycondensation of trans-1,2-bis(3-formyl-9-carbazolyl)cyclobutane with aromatic diamines in n-amyl alcohol at 160°C. Complexation of these PSB's and of poly(vinyl DCZB) (PVDCZB) with iodine produced cation-radical salts which resulted form the transfer of an electron from DCZB moieties to iodine. All the undoped polymers were insulators having electrical conductivity of the order of 10?10–10?12 S cm?1 depending on the structure of polymers. By doping with iodine, the electrical conductivity increased by several orders of magnitude and reached a value of 10?3 S cm?1 in the case of PVDCZB and 10?5–10?6 S cm?1 in the case of PSB's. The electrical conductivity of doped PSB's increased with decreasing diamine length. PVDCZB having the same iodine content per carbazole unit as poly(9-vinyl-carbazole) (PVK) has a greater electrical conductivity than PVK.  相似文献   

16.
《Analytical letters》2012,45(20):2521-2536
Abstract

A selective and sensitive spectrophotometric and atomic absorption spectrophotometric method is developed for the determination of traces of mercury with N-phenylcinnamohydroxamic acid (PCHA) in the environment. Mercury is extracted into a chloroform solution of PCHA at pH 8.5-10.0 and determined by AAS. The mercury hydroxamate binary complex is yellow in colour having a maximum absorbance at 390 nm and molar absorptivity 4.3 × 103 1 mol?1 cm?1, sandell sensitivity 0.0466 μg/cm2. The ternary system using 1-(2-pyridylazo)-2-naphthol has molar absorptivity 8.82 × 103 1 mol?1 cm?1 at 550nm, sandell sensitivity 0.0228 μ/cm2. Beer's law is obeyed in the concentration range of 2.37-38.0 ppm and 0.80-19.5 ppm of mercury for binary and ternary system, respectively. The extraction of Hg-PCHA binary system is studied with a liquid cation exchanger, bis-(2-ethyl hexyl) phosphoric acid (HDEHP) and found to have better selectivity than Hg-PCHA-PAN system. The molar absorptivity of the Hg-PCHA-HDEHP system is 8.82 × 103 1 mol?1 cm?1 at 390 nm and Beer's law is obeyed in the concentration range of 0.47-20 ppm of mercury.

The present method is applied to the determination of mercury in eye drops, aurvedic drugs and environmental samples.  相似文献   

17.
Propionyl promazine phosphate is proposed as a new reagent for the rapid spectrophotometric determination of microgram amounts of Pd(II) and Os(VII). PPP instantaneously forms an orange-red 1:1 complex with Pd(II) in sodium acetate-hydrochloric acid buffer of pH 0.8 to 4.0 at room temperature. The reagent also forms an orange-red radical cation with Os(VIII) in 0.5 to 2.0 M hydrochloric acid. The Pd-PPP complex exhibits an absorption maximum at 490–500 nm with molar absorptivity of 7.1 × 103 liter mol?1 cm?1. The Os-PPP radical cation has an absorption maximum at 505–515 nm with molar absorptivity of 2.21 × 104 liters mol?1 cm?1. The Sandell sensitivity is 0.022 μg/cm2 (Pd) and 0.008 μg/ cm2 (Os). Beer's law is valid over the concentration range 0.2 to 21 ppm (Pd) and 0.2 to 4.2 ppm (Os). The proposed method offers the advantages of simplicity, rapidity, and without the need for heating or extraction. The reagent is used for the determination of Pd in the synthetic mixtures corresponding to Pd alloys used in jewelery and Os in osmiridium alloy.  相似文献   

18.
Promethazine hydrochloride forms a red colored species with vanadium(V) in 6.0–7.5 M phosphoric acid. A 16-fold molar excess of the reagent is necessary for full development of color intensity. Beer's law is valid over the concentration range of 0.1–7.0 ppm. The optimum concentration range as evaluated by Ringbom's method is 0.5–7.0 ppm. The sensitivity of the reaction is 0.005 μg cm?2 and the molar absorptivity is 9.60 × 103 liter mol?1 cm?1 at 517 nm. The effects of acidity, time, temperature, order of addition of reagents, reagent concentration, and the interferences from various ions were reported. Vanadium in vanadium steel containing chromium, molybdenum, manganese, and nickel was determined.  相似文献   

19.
The yellow complex of Pt(IV) with 1-pyridyl-4,4,6-trimethyl-1H,4H-pyrimidine-2-thiol (PyTPT) which has maximum absorbance at 430 nm, is studied for the spectrophotometric determination of the metal. Molar absorptivity is 5000 liters mol?1 cm?1 and Sandell's sensitivity is 0.039 μg/cm2. The determination of Pt(IV) (2.8–8.4 ppm) in the presence of diverse ions is described.  相似文献   

20.
《Analytical letters》2012,45(7):1819-1827
Abstract

A new spectrophotometric method to determine cobalt(II), based on extraction into methyl-isobutyl—ketone at pH 4.0 of its Ephedrine-Co (II)-SCN? association ionic compound, is proposed. the organic extract shows an absorption band at 620 nm, having a molar absortivity coefficient of 4.3. 103 L. mol?1. cm?1. Beer's law is obeyed in the 0.5–19.5 μg Co (II)/mL concentration range. the variation coefficient is 0.32 % for ten determinations at the concentration level of 8.8 ppm of cobalt (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号