首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

2.
It is proved that the limit $$\mathop {\lim }\limits_{\Delta \to \infty } \mathop {\sup }\limits_\gamma \tfrac{1}{\Delta }\int_0^\Delta {f(\gamma (t))dt} $$ , wheref: ? → ? is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation γ ∈ [ω1, ω2], coincides with the limit $$\mathop {\lim }\limits_{T \to \infty } \mathop {\sup }\limits_{c \geqslant 0} \varphi _f (k,{\mathbf{ }}T,{\mathbf{ }}c)$$ , where $$\varphi _f = \frac{{(k - 1)\bar I_f (T,c)}}{{1 + (k - 1)\bar \lambda _f (T,c)}},k = \frac{{\omega _2 }}{{\omega _1 }}$$ . Here ¯λf = λf /T, ¯ If =If/T, and λf is the Lebesgue measure of the set $$\{ \gamma \in [\gamma _0 ,\gamma _0 + T]:f(\gamma ) \geqslant c\} = A_f ,I_f = \int_{A_f } {f(\gamma )d\gamma } $$ . It is established that this limit always exists for almost-periodic functionsf.  相似文献   

3.
Given a stochastic differential equation based on semimartingale with spatial parameter (1) $$\varphi _t = x_0 + \int_{t_0 }^t {F(\varphi _s ,ds) } on t \geqslant t_0 $$ and it perturbed system (2) $$\psi _t = x_0 + \int_{t_0 }^t {F\left( {\psi \alpha _s , ds} \right)} + \int_{t_0 }^t {G\left( {\psi _s , ds} \right)} on t \geqslant t_0 $$ In this paper we give some sufficient conditions under which the eventual uniform asymptotic stability of Eq. (1) is shared by Eq. (2).  相似文献   

4.
Для заданной на едини чной окружности огра ниченной функцииω(ξ) рассматр ивается усложненная задача а ппроксимации аналит ическими функциями: $$\mathop {\inf }\limits_{\varphi \in H^\infty } \left[ {\left\| {\omega - \varphi } \right\| + \mathop \Sigma \limits_{k = 0}^\infty \varepsilon _k \left| {\lambda _k } \right|} \right],$$ где ∥·∥ понимается вL ,ε k ≧0 — заданные чис ла, $$\mathop \Sigma \limits_{k = 0}^\infty \varepsilon _k< + \infty ,\varphi (z) = \mathop \Sigma \limits_{k = 0}^\infty \lambda _k z^k .$$ Доказывается, что при всех достаточно малы хε k экстремальной в этой задаче будет функция обычного наилучшего приближения (та же, что и приε k =0,k=0, 1, ...). В частности, при $$\omega (\zeta ) = \frac{{\gamma _0 }}{{\zeta ^n }} + \frac{{\gamma _1 }}{{\zeta ^{n - 1} }} + ... + \frac{{\gamma _{n - 1} }}{\zeta }$$ экстремальной оказы вается дробь Каратео дори—Фейера. Переход к двойственн ой задаче позволяет получить т очные оценки для клас са интегралов типа Коши, выделяемого огранич ениями, наложенными на велич ины коэффициентов ря да Тейлора.  相似文献   

5.
Для линейных методов суммирования рядов Ф урье (1) $$L_n (f;x) = \frac{1}{\pi }\mathop \smallint \limits_{ - \pi }^\pi f(x + t)\left( {\frac{1}{2} + \sum\limits_{k = 1}^n {\lambda _{k,n} } \cos kt} \right)dt$$ на классах $$C(\varepsilon ) = \{ f:E_n (f) \leqq \varepsilon _n ;\forall n \geqq 0\} ,\varepsilon = \{ \varepsilon _n \} _{n = 0.}^\infty \varepsilon _n \downarrow 0,$$ доказываются:
  1. оценки для порядка р оста норм ∥{Ln∥, если из вестен порядок приближения операторами (1) некоторого классаС (?) (при этом, если опера торы (1) приближают класс С(е) с наилучшим порядком, то находится точная а симптотика возрастания норм {∥ Ln∥);
  2. сравнительные оцен ки порядков приближе ния классовС(?) операторами (1), если известен порядок при ближения ими некотор ого более узкого класса С(?*).
В том случае, когда опе раторы (1) приближают кл асс С(?*) с наилучшим порядком, получаются точные по рядковые оценки для л юбого более широкого класса С(?).  相似文献   

6.
Let F(Z) be a cusp form of integral weight k relative to the Siegel modular group Spn(Z) and let f(N) be its Fourier coefficient with index N. Making use of Rankin's convolution, one proves the estimate (1) $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2} - \tfrac{1}{2}\delta (n)} ),$$ where $$\delta (n) = \frac{{n + 1}}{{\left( {n + 1} \right)\left( {2n + \tfrac{{1 + ( - 1)^n }}{2}} \right) + 1}}.$$ Previously, for n ≥ 2 one has known Raghavan's estimate $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2}} )$$ In the case n=2, Kitaoka has obtained a result, sharper than (1), namely: (2) $$f(\mathcal{N}) = O(\left| \mathcal{N} \right|^{\tfrac{k}{2} - \tfrac{1}{4} + \varepsilon } ).$$ At the end of the paper one investigates specially the case n=2. It is shown that in some cases the result (2) can be improved to, apparently, unimprovable estimates if one assumes some analogues of the Petersson conjecture. These results lead to a conjecture regarding the optimal estimates of f(N), n=2.  相似文献   

7.
The problem of minimizing the functional (A) $${}_a\smallint ^b \varphi (x,y,y',y'')dx$$ under the conditions (B) $$y(a) = a_0 ,y'(a) = a_1 ,y(b) = b_0 ,y'(b) = b_1$$ is replaced by the problem of finding the vector (y1,y2,...,yn?1) on which the sum (C) $$\sum\limits_{\kappa = 0}^n {C_\kappa \varphi (x_\kappa ,y_\kappa ,\left. {\frac{{y_{\kappa + 1} - y_\kappa }}{h},\frac{{y_{\kappa + 1} - 2y_\kappa + y_{\kappa + 1} )}}{{h^2 }}} \right)}$$ takes a minimal value. Under certain conditions on ? andC k it is proved that a solution exists for the difference scheme constructed. The method of differentiation with respect to a parameter is used for the proof.  相似文献   

8.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

9.
10.
The approximation is studied of the first boundary-value problem for the equation (1) $$- \frac{d}{{dx}}K(x,\frac{{du}}{{dx}}) + f(x,u) = 0,0< x< 1,$$ with boundary conditions (2) $$u(0) = u(1) = 0$$ by difference boundary-value problems of form (3) $$- \left[ {a(x,w_{\bar x} )} \right]_x + \varphi (x,w) = 0,x \in w_r ,$$ (4) $$w(0) = w(1) = 0.$$ Theorems are established on the solvability of problem (3), (4). Theorems are proved on uniform convergence and on the order of uniform convergence. Here, as usual, boundedness is not assumed, but just the summability of the corresponding derivatives of the solutions of problem (1), (2). Also considered are singular boundary-value problems of form (1), (2), where uniform convergence with order h is proved under assumption of piecewise absolute continuity of the functionf(x,u(x)).  相似文献   

11.
Solutions with asymptotics in integral and fractional powers of the parameter ? are constructed for the vector differential equation $$\varepsilon ^h \dot X = A(t,\varepsilon ) X + \varepsilon ^{\alpha _1 } p(t,\varepsilon ) \exp \left( {\varepsilon ^{ - h} \int\limits_0^t {\lambda (\tau )d\tau } } \right)$$ in the case of resonance and multiple spectrum of the limit matrix. $$\varepsilon ^h \dot X = A(t,\varepsilon ) X + \varepsilon ^{\alpha _1 } p(t,\varepsilon ) \exp \left( {\varepsilon ^{ - h} \int\limits_0^t {\lambda (\tau )d\tau } } \right)$$   相似文献   

12.
Let (Ω, ?,P) be the infinite product of identical copies of the unit interval probability space. For a Lebesgue measurable subsetI of the unit interval, let \(A(N,I,\omega ) = \# \left\{ {n \leqslant N|\omega _n \varepsilon I} \right\}\) , where ω=(ω12,...). For integersm>1, and 0≤r<m, define $$\varepsilon (k,r,m,I,\omega ) = \left\{ {\begin{array}{*{20}c} {1\,if\,A(k,I,\omega ) \equiv r(\bmod m)} \\ {0\,otherwise} \\ \end{array} } \right.$$ and $$\eta (k,m,I,\omega ) = \left\{ {\begin{array}{*{20}c} {1\,if\,(A(k,I,\omega ),m) \equiv 1} \\ {0\,otherwise.} \\ \end{array} } \right.$$ A theorem ofK. L. Chung yields an iterated logarithm law and a central limit theorem for sums of the variables ε(k) and η(k).  相似文献   

13.
In this paper sufficient conditions (Theorem 1 and Corollary 1) for the asymptotic stability (in the large) of the trivial solution x=0 of the differential equations $$D_1 (x) = x^{(4)} + f_1 (\ddot x)\dddot x + f_2 (\dot x,\ddot x) + g(\dot x) + h(x,\dot x) = 0$$ , and $$D_2 (x) = x^{(4)} + F_1 (\ddot x)\dddot x + F_2 (\dot x,\ddot x)\ddot x + G(\dot x)\dot x + H(x,\dot x)x = 0$$ are given. A result (Theorem 2) on the boundedness of the solutions of the differential equations D1(x)=p1(t) and D2(x)=p2(t) is also established. Further, the results which we obtain reduce to results which are more general than those obtained by Ezeilo [1] for the differential equation $$x^{(4)} + f_1 (\ddot x)\dddot x + a_2 \ddot x + g(\dot x) + a_4 x = p(t)$$ .  相似文献   

14.
A maximum principle is obtained for control problems involving a constant time lag τ in both the control and state variables. The problem considered is that of minimizing $$I(x) = \int_{t^0 }^{t^1 } {L (t,x(t), x(t - \tau ), u(t), u(t - \tau )) dt} $$ subject to the constraints 1 $$\begin{gathered} \dot x(t) = f(t,x(t),x(t - \tau ),u(t),u(t - \tau )), \hfill \\ x(t) = \phi (t), u(t) = \eta (t), t^0 - \tau \leqslant t \leqslant t^0 , \hfill \\ \end{gathered} $$ 1 $$\psi _\alpha (t,x(t),x(t - \tau )) \leqslant 0,\alpha = 1, \ldots ,m,$$ 1 $$x^i (t^1 ) = X^i ,i = 1, \ldots ,n$$ . The results are obtained using the method of Hestenes.  相似文献   

15.
В статье рассматрива ются одномерные и дву мерные тригонометрические ряды с моно-тонными коэффициентами. Дает ся пример двойного тригонометрическог о ряда (1) $$\mathop \sum \limits_{n,k = 1}^\infty a_{nk} \sin nx\sin ky,$$ , коэффициенты которо го монотонны поk и поп, любая последовательность \(\{ S_{n_k m_k } (x,y)\} _{k = 1}^\infty\) прямоугольных части чных сумм ряда (1), где min(n k ,m k )→∞ приk→∞, расходится по чти всюду на (0,n)2. Кроме того, изучается мера множеств нулей ф ункций (2) $$f(x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{n = 1}^{a_0 } a_n \cos nx\tilde f(x) = \mathop \sum \limits_{n = 1}^\infty a_n \sin nx,$$ , гдеа n ↓ приn→ ∞, и доказ ьшается несколько те орем о скорости убывания ко эффициентовa n рядов (2), если все част ичные суммыS n (f,x) или \(S_n (\tilde f,x)\) дляn=1,2,... неотрицате ль-ны на (0,n).  相似文献   

16.
LetG be a bipartite graph with bipartition (X, Y) andk a positive integer. If (i) $$\left| X \right| = \left| Y \right|,$$ (ii) $$\delta (G) \geqslant \left\lceil {\frac{{\left| X \right|}}{2}} \right\rceil \geqslant k,$$ \(\left| X \right| \geqslant 4k - 4\sqrt k + 1\) when |X| is odd and |X| ≥ 4k ? 2 when |X| is even, thenG has ak-factor.  相似文献   

17.
18.
Shoenfield's unramified version of Cohen's forcing is defined in two stages: one which does not preserve double negation and the other which modifies the former so as to preserve double negation. Here we express the unramified forcing, which preserves double negation, in a single stage. Surprisingly enough, the corresponding definition of forcing for equality acquires a rather simple form. In [2] forcing ∥- is expressed in terms of strong forcing \( \Vdash * \) viap∥-Q iffp \( \Vdash * \) ¬ ¬Q for every formulaQ ofZF set theory and every elementp of a partially ordered set (P, ≦). In its turn,p \( \Vdash * \) Q is defined by the following five clauses: (1) $$p \Vdash * a \in biff(\exists c)(\exists q \geqq p)((c,q) \in b \wedge p \Vdash * a = c)$$ (2) $$\begin{gathered} p \Vdash * a \ne biff(\exists c)(\exists q \geqq p)(((c,q) \in a \wedge p \Vdash * c \notin b) \hfill \\ ((c,q) \in b \wedge p \Vdash * c \notin a)) \hfill \\ \end{gathered} $$ (3) $$p \Vdash * \neg Qiff(\forall q)(q \leqq p \to \neg (q \Vdash * Q))$$ (4) $$p \Vdash * (Q \vee S)iff(p \Vdash * Q) \vee (p \Vdash * S)$$ (5) $$p \Vdash * (\exists x)Q(x)iff(\exists b)(p \Vdash * Q(b))$$ .  相似文献   

19.
In this paper we consider two-sided parabolic inequalities of the form (li) $$\psi _1 \leqslant u \leqslant \psi _2 , in{\mathbf{ }}Q;$$ (lii) $$\left[ { - \frac{{\partial u}}{{\partial t}} + A(t)u + H(x,t,u,Du)} \right]e \geqslant 0, in{\mathbf{ }}Q,$$ for alle in the convex support cone of the solution given by $$K(u) = \left\{ {\lambda (\upsilon - u):\psi _1 \leqslant \upsilon \leqslant \psi _2 ,\lambda > 0} \right\}{\mathbf{ }};$$ (liii) $$\left. {\frac{{\partial u}}{{\partial v}}} \right|_\Sigma = 0, u( \cdot ,T) = \bar u$$ where $$Q = \Omega \times (0,T), \sum = \partial \Omega \times (0,T).$$ Such inequalities arise in the characterization of saddle-point payoffsu in two person differential games with stopping times as strategies. In this case,H is the Hamiltonian in the formulation. A numerical scheme for approximatingu is obtained by the continuous time, piecewise linear, Galerkin approximation of a so-called penalized equation. A rate of convergence tou of orderO(h 1/2) is demonstrated in theL 2(0,T; H 1(Ω)) norm, whereh is the maximum diameter of a given triangulation.  相似文献   

20.
It is known that the Riemann hypothesis is equivalent to the statement that all zeros of the Riemann ξ-function are real. On writingξ(x/2)=8 ∫ 0 Φ(t) cos(xt)dt, it is known that a necessary condition that the Riemann hypothesis be valid is that the moments \(\hat b_m (\lambda ): = \int_0^\infty {t^{2m} e^{\lambda t^2 } \Phi (t)dt}\) satisfy the Turán inequalities (*) $$(\hat b_m (\lambda ))^2 > \left( {\frac{{2m - 1}}{{2m + 1}}} \right)\hat b_{m - 1} (\lambda )\hat b_{m + 1} (\lambda )(m \geqslant 1,\lambda \geqslant 0).$$ We give here a constructive proof that log \(\Phi (\sqrt t )\) is strictly concave for 0 <t < ∞, and with this we deduce in Theorem 2.4 a general class of moment inequalities which, as a special case, establishes that the inequalities (*) are in fact valid for all real λ. As the case λ=0 of (*) corresponds to the Pólya conjecture of 1927, this gives a new proof of the Pólya conjecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号