首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
The position of abstraction by H atoms from ethylene, propylene, butene-1, and cis- and trans-butene-2 and the rates of abstraction relative to addition have been measured at 25°C. Only allylic abstraction was observed. From ethylene, abstraction relative to addition was ≤3×10?4. For propylene, butene-1, cis-butene-2, and trans-butene-2, abstraction occurred on 0.2%, 1.6%, 1.5%, and 0.9% of the reactive encounters, if dis-proprotionation-combination ratios for allyl and alkyl radicals are similar to those for alkyl–alkyl pairs.  相似文献   

2.
A study of the isomerization of butene-2 with TiCl3 or Al(C2H5)3–TiCl3 catalyst in n-heptane has been investigated at 60–80°C to elucidate further the mechanism of monomer-isomerization polymerization. It was found that positional and geometrical isomerizations in the presence of these catalysts occurred concurrently with activation energies of 14–16 kcal/mole. The presence of Al(C2H5)3 with TiCl3 catalyst could accelerate the initial rates of these isomerizations and initiate the monomer-isomerization polymerization of butene-2. From the results obtained, it was concluded that the isomerization of butene-2 proceeds via an intermediate σ-complex between the transition metal hydride and butene isomers.  相似文献   

3.
The rate of the thermal cycloaddition of ethylene to cis and trans butene-2 has been measured at 693°K and at pressures of about 12 atmospheres. The ratio of trans- to cis-1,2-dimethylcyclobutane from the reaction of trans-butene-2 with ethylene was 5.1, obtained from the initial rates of formation of the products. Similarly, the ratio of cis- to trans-1,2-dimethyl-cyclobutane from the reaction of cis-butene-2 with ethylene was 2.8. The results show that the cycloaddition reactions are the reverse of the decomposition reactions of the dimethyl-cyclobutanes and may be interpreted in terms of a biradical intermediate. Several ratios of rate constants have been measured as well as the rate constants for the reaction of the olefins to form the intermediate biradical.  相似文献   

4.
In order to clarify the correlation between polymerization and monomer isomerization in the monomer-isomerization polymerization of β-olefins, the effects of some transition metal compounds which have been known to catalyze olefin isomerizations on the polymerizations of butene-2 and pentene-2 with Al(C2H5)3–TiCl3 or Al(C2H5)3–VCl3 catalyst have been investigated. It was found that some transition metal compounds such as acetylacetonates of Fe(III), Co(II), and Cr(III) or nickel dimethylglyoxime remarkably accelerate these polymerizations with Al(C2H5)3–TiCl3 catalyst at 80°C. All the polymers from butene-2 were high molecular weight polybutene-1. With Al(C2H5)3–VCl3 catalyst, which polymerizes α-olefins but does not catalyze polymerization of β-olefins, no monomer-isomerization polymerizations of butene-2 and pentene-2 were observed. When Fe(III) acetylacetonate was added to this catalyst system, however, polymerization occurred. These results strongly indicate that two independent active centers for the olefin isomerization and the polymerizations of α-olefins were necessary for the monomer-isomerization polymerizations of β-olefins.  相似文献   

5.
The process of butene-1 isomerization in the presence of two groups of samples of zeolite-containing catalyst (ZCC) that earlier participated in the traditional and oxidative catalytic cracking of vacuum gasoil is investigated. It is established that the nature of the reaction mixture and conditions of the cracking process are key factors in forming the acidic and basic properties of the catalyst. It is shown that the highest activity in the butene-1 isomerization into cis-/trans-butene-2 is demonstrated by ZCC samples that participated in the oxidative catalytic cracking (oxycracking). It is suggested that the enhanced catalytic activity of this group of ZCC samples was related to the availability of acid–base centers in the form of radical-like oxygen along with protic- and aprotic-type acidic centers in the structure of the oxidative compaction products.  相似文献   

6.
Relative changes in polymerization activity of ethylene, propylene, and butene-1 in Ziegler-Natta polymerization were compared by use of TiCl3 samples contaminated with O2 and H2O to various extents. Catalyst depletion varied for the three monomers which supported the existence of different active centers. In butene-1 polymerizations with the system Al(C2H5)2Cl–TiCl3, the formation of active centers involves an irreversible and a reversible (adsorption) reaction, the former pertaining to the formation of Al(C2H5)Cl2 and dependent upon the purity of the TiCl3. The kinetic treatment of the rate curves suggests a mixed order of catalyst deactivation and again points to the importance of Al(C2H5)Cl2.  相似文献   

7.
Spiroorthoesters (SOEs), cis‐2,3‐tetramethylene‐1,4,6‐trioxaspiro[4,5]decane ( I ) and cis‐2,3‐tetramethylene‐1,4,6‐trioxaspiro[4,6]undecane ( II ), with different cyclic ether ring sizes were synthesized, and their stereostructure and steric energy were determined. With steric‐hindrance‐sensitized 9‐phenyl‐9,10‐dihydro‐anthracen‐10‐ylium cation as an initiator, I and II underwent regiospecific polymerization to yield trans form of stereoregular poly(ether esters)—poly(trans‐2‐oxycyclohexyl pentanoate) (? [trans‐2‐OCHP]n? ) ( III ) and poly(trans‐2‐oxycyclohexyl hexanoate) (? [trans‐2‐OCHH]n? ) ( V ), respectively. With SnCl4 as another initiator, I and II underwent regiospecific polymerization through different mechanisms to afford cis form poly(cis‐2‐oxycyclohexyl pentanoate) (? [cis‐2‐OCHP]n? ) ( IV ) and trans form (? [trans‐2‐OCHH]n? ) ( VI ) stereoregular poly(ether esters). The polymerization mechanisms of SOEs proceeded in the regiospecific manner were determined by the relationship among the sterostructures of SOEs and its subsequently formed polymers, the steric energy of monomers, and the free energy difference in the transition state of reaction. Owing to the conversion of cis substitution at C‐2 and C‐3 in I or II to the trans form during polymerization, polymers III , V , and VI exhibited a higher volume of expansion during polymerization than IV , which showed high volume shrinkage. Group contributions of divalent trans‐ and cis‐1.2‐cyclohexyl groups were derived and confirmed by measuring the densities of the corresponding stereoregular polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
The polymerization of 2‐butene and its copolymerization with ethylene have been investigated using four kinds of dichlorobis(β‐diketonato)titanium complexes, [ArN(CH2)3NAr]TiCl2 (Ar = 2,6‐iPr2C6H3) and typical metallocene catalysts. The obtained copolymers display lower melting points than those produced of homopolyethylene under the same polymerization conditions. 13C NMR analysis indicates that 9.3 mol‐% of 2‐butene units were incorporated into the polymer chains with Ti(BFA)2Cl2‐MAO as the catalyst system. With the trans‐2‐butene a higher copolymerization rate was observed than with cis‐2‐butene. A highly regioselective catalyst system for propene polymerization, [ArN(CH2)3NAr]TiCl2 complex using a mixture of triisobutylaluminium and Ph3CB(C6F5)4 as cocatalyst, was found to copolymerize a mixture of 1‐butene and trans‐2‐butene with ethylene up to 3.1 mol‐%. Monomer isomerization‐polymerization proceeds with typical metallocene catalysts to produce copolymers consisting of ethylene and 1‐butene.  相似文献   

9.
Polymerization of 2‐pentene with [ArN?C(An)C(An)·NAr)NiBr2 (Ar?2,6‐iPr2C6H3)] ( 1‐Ni) /M‐MAO catalyst was investigated. A reactivity between trans‐2‐pentene and cis‐2‐pentene on the polymerization was quite different, and trans‐2‐pentene polymerized with 1‐Ni /M‐MAO catalyst to give a high molecular weight polymer. On the other hand, the polymerization of cis‐2‐butene with 1‐Ni /M‐MAO catalyst did not give any polymeric products. In the polymerization of mixture of trans‐ and cis‐2‐pentene with 1‐Ni /M‐MAO catalyst, the Mn of the polymer increased with an increase of the polymer yields. However, the relationship between polymer yield and the Mn of the polymer did not give a strict straight line, and the Mw/Mn also increased with increasing polymer yield. This suggests that side reactions were induced during the polymerization. The structures of the polymer obtained from the polymerization of 2‐ pentene with 1‐Ni /M‐MAO catalyst consists of ? CH2? CH2? CH(CH2CH3)? , ? CH2? CH2? CH2? CH(CH3)? , ? CH2? CH(CH2CH2CH3)? , and methylene sequence ? (CH2)n? (n ≥ 5) units, which is related to the chain walking mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2858–2863, 2008  相似文献   

10.
The radiation induced copolymerization of chlorotrifluoro ethylene (CTFE) with various butenes was studied at temperatures between ?20°C and +40°C using 60Co-γ rays. In the case of isobutene (IB) an almost alternating crystalline copolymer is formed in a heterogeneous reaction. At high IB-concentrations a cationic homopolymerization of this olefin occurs simultaneously to the radical copolymerization. The copolymerization rate increases with increasing temperature and degree of conversion. The highest rates are obtained for monomer mixtures with about 80 to 90 mole % CTFE. The decrease in rate for monomer mixtures with still higher CTFE concentrations is assumed to be partly due to the low IB-concentration and partly to degradative chain transfer by the isobutene. In support of this assumption molecular weights and melting points of the copolymer have been determined. Similar results were obtained for butene-1 but in this case, no cationic homopolymerization was observed and the reaction proceeded homogeneously. Cis- and trans-butene-2 only acted as polymerization inhibitors.  相似文献   

11.
The cis- and trans-propenyl alkyl ethers were polymerized by a homogeneous catalyst [BF3·O(C2H5)2] and a heterogeneous catalyst [Al2(SO4)3–H2SO4 complex]. Methyl, ethyl, isopropyl, n-butyl and tert-butyl propenyl ethers were used as monomers. The steric structure of the polymers formed depended on the geometric structures of monomer and the polymerization conditions. In polymerizations with BF3·O(C2H5)2 at ?78°C., trans isomers produced crystalline polymers, but cis isomers formed amorphous ones except for tert-butyl propenyl ether. On the other hand, highly crystalline polymers were formed from cis isomers, but not from the trans isomers in the polymerization by Al2(SO4)3–H2SO4 complex at 0°C. The x-ray diffraction patterns of the crystalline polymers obtained from the trans isomers were different from those produced from the cis isomers, except for poly(methyl propenyl ether). The reaction mechanism was discussed briefly on these basis of these results.  相似文献   

12.
Polymerization of ethylene with ball-milled titanium dichloride leads to a completely linear polymer with terminal unsaturation corresponding to approximately one carbon–carbon double bond per molecule. Polymerization rate is first-order in both monomer and catalyst concentration at 140°C. Due to a thermal deactivation of the catalyst, the polymerization rate falls sharply with temperature above 180°C. Propylene and butene-1 will copolymerization with ethylene in this system, propylene more efficiently than butene-1. Evidence for copolymerization of trans-2-butene, but not of the cis-isomer or of isobutene, in trace concentrations is presented. Propylene is homopolymerized to a product low in isotactic content. The significance of the structural and (limited) kinetic data in terms of the mechanism of polymerization are discussed.  相似文献   

13.
Monomer-isomerization polymerization of cis-2-butene (c2B) with Ziegler–Natta catalysts was studied to find a highly active catalyst. Among the transition metals [TiCl3, TiCl4, VCl3, VOCl3, and V (acac)3] and alkylauminums used, TiCl3? R3Al (R = C2H5 and i-C4H9) was found to show a high-activity for monomer-isomerization polymerization of c2B. The polymer yield was low with TiCl4? (C2H5)3Al catalyst. However, when NiCl2 was added to this catalyst, the polymer yield increased. With TiCl3? (C2H5)3Al catalyst, the effect of the Al/Ti molar ratio was observed and a maximum for the polymer yields was obtained at molar ratios of 2.0–3.0, but the isomerization increased as a function of Al/Ti molar ratio. The valence state of titanium on active sites for isomerization and polymerization is discussed.  相似文献   

14.
A study of the pressure dependence of the C5 products from the reaction of cis-butene-2 and methylene is reported. Methylene was produced by the photolysis of diazomethane with 4358 Å light at 23° or 56°, and by photolysis of ketene with 3200 Å radiation at 23° or 100°. The change with increasing pressure of the relative amounts of the characteristically “triplet products” (trans-1,2-dimethylcyclopropane, trans-pentene-2 (TP2), and 3-methylbutene-1 (3MB1)) and “singlet products” (cis-1,2-dimethylcyclopropane (CDMC) and cis-pentene-2 (CP2)) are discussed. The behavior is reminiscent of that found in 3CH2-cis-butene-2 systems and can be interpreted in terms of the rapid rate of rearrangement of an initial triplet diradical product component, due to 3CH2, relative to the slower rate and readier collisional stabilization of an initial vibrationally-excited dimethyl cyclopropane product component, due to 1CH2. Relative rates of reactions of 1CH2 with allylic CH:vinyl CH:C?C in the neat liquid were, for diazomethane, 1:1.1:7.2 and, for ketene, 1:1.2:6.7.  相似文献   

15.
cis‐Selective polymerizations of isoprene with the catalysts composed of η5‐C5H4(R)TiCl3 (1; R?H, 2 ; tert‐Bu) and methylaluminoxane were investigated. Both catalysts showed remarkable catalytic activities for the polymerization of isoprene. The polymerization activities were strongly affected by the substituent introduced on cyclopentadienyl ring. Introduction of bulky tert‐butyl group was found to be effective for enhancement of polymerization activity, but the cis‐content of polyisoprene prepared by the 2 /MAO catalyst was lower than that by 1 /MAO catalyst. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1841–1844, 2004  相似文献   

16.
The polymerization of 4-vinyl-1-cyclohexene (4VCHE) with Ziegler–Natta catalysts was studied. The polymerization of 4VCHE by the vinyl group took place with TiCl3–aluminum alkyls catalysts, while vinylene group of 4VCHE did not participate in the reaction, but it affected the polymerization rate of 4VCHE. The effects of aluminum alkyl and type of TiCl3 on the polymerization were examined. The overall activation energy for the polymerization was estimated to be 41.9kJ/mol. Monomer-isomerization copolymerization of 4VCHE and trans-2-butene occurred with the TiCl3-(i-C4H9)3Al catalyst to give copolymers consisting of 4VCHE and 1-butene units.  相似文献   

17.
Monomer-isomerization polymerization of cis-2-butene with four types of TiCl3 in combination with alkylaluminum compounds was investigated. The catalytic activities for monomer-isomerization polymerization were found to be influenced by the type of TiCl3 employed: systems containing hydrogen-activated-TiCl3 and Solvay-TiCl3 in combination with R3Al (R = C2H5 and i-C4H9) showed high catalytic activity for both isomerization and polymerization, whereas (C2H5)2AlCl in combination with any type of TiCl3 did not induce the monomer-isomerization polymerization. The addition effect of NiCl2 to the TiCl3? (C2H5)3Al catalyst was examined. Catalytic activities for both polymerization and isomerization reactions were found to depend on the amount of NiCl2 added.  相似文献   

18.
The rate of the thermal cycloaddition of ethylene to cis-and trans-butene-2 has been measured at 663, 678, 693, and 703°K, and the energy relations between the reactants, intermediates, and products have been determined. The intermediate biradicals formed from the cis reactants and from the trans reactants were shown to be separated by a small but measurable enthalpy difference. This result further supports the conclusion of Part I that the intermediates are distinct species which retain some of the original configuration of the reactant. The significance of the results in relation to the mechanism of “forbidden” reactions is discussed.  相似文献   

19.
Butene-1 was polymerized with a highly-active supported titanium catalyst which was developed in this laboratory. The influences of various conditions (e.g., catalyst composition, temperature, external ester, H2, triethylaluminum, and catalyst concentration) on the catalytic activity, decay of polymerization rate, molecular weight, and isotacticity of the products were studied in detail. The structural properties of the PB-1 were characterized by WAXD, DSC, and 13C-NMR. It was found that the catalyst TiCl4, Ti(OBu)4/MgCl2/ethyl benzoate (EB)/Ph2SiCl2–AlEt3 shows high activity, i.e., 3.2 × 104 g PB/g Ti h. Isotacticity of the product was increased by adding p-CH3C6H4COOEt into the catalytic system. Molecular weight of the product can be easily controlled by H2. The decay of polymerization rate with time fulfills the equation: Rt ? Rs = (Ro ? Rs)et. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
The photolyses of ketene (at 313 and 280 nm) and diazirine at 313 nm in the presence of cis-butene-2 were studied. Vibrational relaxation of chemically activated dimethylcyclopropane was shown to occur as a multistep process, and 17 ± 4 kJ mol?1 was obtained for the average energy transferred per collision with butene-2 collider. Activated cis-dimethylcyclopropane is formed in the reaction of singlet methylene and cis-butene-2 with broad energy distribution which originates from the energy partitioning in the photolytic act. About 30% of the energy released in the photolysis of the methylene source is carried by singlet methylene as vibrational energy at the time of reaction, and this fraction was found to be practically independent of the radical source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号