首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
Let F{\mathcal{F}} be a holomorphic foliation of \mathbbP2{\mathbb{P}^2} by Riemann surfaces. Assume all the singular points of F{\mathcal{F}} are hyperbolic. If F{\mathcal{F}} has no algebraic leaf, then there is a unique positive harmonic (1, 1) current T of mass one, directed by F{\mathcal{F}}. This implies strong ergodic properties for the foliation F{\mathcal{F}}. We also study the harmonic flow associated to the current T.  相似文献   

8.
9.
Let F{\mathcal{F}} be a singular Riemannian foliation on a compact Riemannian manifold M. By successive blow-ups along the strata of F{\mathcal{F}} we construct a regular Riemannian foliation [^(F)]{\hat{\mathcal{F}}} on a compact Riemannian manifold [^(M)]{\hat{M}} and a desingularization map [^(r)]:[^(M)]? M{\hat{\rho}:\hat{M}\rightarrow M} that projects leaves of [^(F)]{\hat{\mathcal{F}}} into leaves of F{\mathcal{F}}. This result generalizes a previous result due to Molino for the particular case of a singular Riemannian foliation whose leaves were the closure of leaves of a regular Riemannian foliation. We also prove that, if the leaves of F{\mathcal{F}} are compact, then, for each small ${\epsilon >0 }${\epsilon >0 }, we can find [^(M)]{\hat{M}} and [^(F)]{\hat{\mathcal{F}}} so that the desingularization map induces an e{\epsilon}-isometry between M/F{M/\mathcal{F}} and [^(M)]/[^(F)]{\hat{M}/\hat{\mathcal{F}}}. This implies in particular that the space of leaves M/F{M/\mathcal{F}} is a Gromov-Hausdorff limit of a sequence of Riemannian orbifolds {([^(M)]n/[^(F)]n)}{\{(\hat{M}_{n}/\hat{\mathcal{F}}_{n})\}}.  相似文献   

10.
Let ${\mathbb {F}}Let \mathbb F{\mathbb {F}} a finite field. We show that the universal characteristic factor for the Gowers–Host–Kra uniformity seminorm U k (X) for an ergodic action (Tg)g ? \mathbb Fw{(T_{g})_{{g} \in \mathbb {F}^{\omega}}} of the infinite abelian group \mathbb Fw{\mathbb {F}^{\omega}} on a probability space X = (X, B, m){X = (X, \mathcal {B}, \mu)} is generated by phase polynomials f: X ? S1{\phi : X \to S^{1}} of degree less than C(k) on X, where C(k) depends only on k. In the case where k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} we obtain the sharp result C(k) = k. This is a finite field counterpart of an analogous result for \mathbb Z{\mathbb {Z}} by Host and Kra [HK]. In a companion paper [TZ] to this paper, we shall combine this result with a correspondence principle to establish the inverse theorem for the Gowers norm in finite fields in the high characteristic case k £ char(\mathbb F){k \leq {\rm char}(\mathbb {F})} , with a partial result in low characteristic.  相似文献   

11.
Géza Tóth 《Combinatorica》2000,20(4):589-596
Let F{\cal{F}} denote a family of pairwise disjoint convex sets in the plane. F{\cal{F}} is said to be in convex position, if none of its members is contained in the convex hull of the union of the others. For any fixed k 3 5k\ge5, we give a linear upper bound on Pk(n)P_k(n), the maximum size of a family F{\cal{F}} with the property that any k members of F{\cal{F}} are in convex position, but no n are.  相似文献   

12.
13.
The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel kS(z,w) = (1 - z [`(w)])-1{k_S(z,w) = (1 - z {\overline {w}})^{-1}} for |z|, |w| < 1, by means of (1/k S )(T, T*) ≥ 0, we consider an arbitrary open connected domain Ω in \mathbb Cn{{\mathbb {C}}^n}, a kernel k on Ω so that 1/k is a polynomial and a tuple T = (T 1, T 2, . . . , T n ) of commuting bounded operators on a complex separable Hilbert space H{\mathcal H} such that (1/k)(T, T*) ≥ 0. Under some standard assumptions on k, it turns out that whether a characteristic function can be associated with T or not depends not only on T, but also on the kernel k. We give a necessary and sufficient condition. When this condition is satisfied, a functional model can be constructed. Moreover, the characteristic function then is a complete unitary invariant for a suitable class of tuples T.  相似文献   

14.
15.
Let \mathbbF{\mathbb{F}} be a finite field and suppose that a single element of \mathbbF{\mathbb{F}} is used as an authenticator (or tag). Further, suppose that any message consists of at most L elements of \mathbbF{\mathbb{F}}. For this setting, usual polynomial based universal hashing achieves a collision bound of (L-1)/|\mathbbF|{(L-1)/|\mathbb{F}|} using a single element of \mathbbF{\mathbb{F}} as the key. The well-known multi-linear hashing achieves a collision bound of 1/|\mathbbF|{1/|\mathbb{F}|} using L elements of \mathbbF{\mathbb{F}} as the key. In this work, we present a new universal hash function which achieves a collision bound of mélogm Lù/|\mathbbF|, m 3 2{m\lceil\log_m L\rceil/|\mathbb{F}|, m\geq 2}, using 1+élogm Lù{1+\lceil\log_m L\rceil} elements of \mathbbF{\mathbb{F}} as the key. This provides a new trade-off between key size and collision probability for universal hash functions.  相似文献   

16.
Let ${\mathbb{G}}Let \mathbbG{\mathbb{G}} be a Carnot group of step r and m generators and homogeneous dimension Q. Let \mathbbFm,r{\mathbb{F}_{m,r}} denote the free Lie group of step r and m generators. Let also p:\mathbbFm,r?\mathbbG{\pi:\mathbb{F}_{m,r}\to\mathbb{G}} be a lifting map. We show that any horizontally convex function u on \mathbbG{\mathbb{G}} lifts to a horizontally convex function u°p{u\circ \pi} on \mathbbFm,r{\mathbb{F}_{m,r}} (with respect to a suitable horizontal frame on \mathbbFm,r{\mathbb{F}_{m,r}}). One of the main aims of the paper is to exhibit an example of a sub-Laplacian L=?j=1m Xj2{\mathcal{L}=\sum_{j=1}^m X_j^2} on a Carnot group of step two such that the relevant L{\mathcal{L}}-gauge function d (i.e., d 2-Q is the fundamental solution for L{\mathcal{L}}) is not h-convex with respect to the horizontal frame {X 1, . . . , X m }. This gives a negative answer to a question posed in Danielli et al. (Commun. Anal. Geom. 11 (2003), 263–341).  相似文献   

17.
Given a closed subspace ${\mathcal{S}}Given a closed subspace S{\mathcal{S}} of a Hilbert space H{\mathcal{H}}, we study the sets FS{\mathcal{F}_\mathcal{S}} of pseudo-frames, CFS{\mathcal{C}\mathcal{F}_\mathcal{S}} of commutative pseudo-frames and \mathfrakXS{\tiny{\mathfrak{X}}_{\mathcal{S}}} of dual frames for S{\mathcal{S}}, via the (well known) one to one correspondence which assigns a pair of operators (F, H) to a frame pair ({fn}n ? \mathbbN,{hn}n ? \mathbbN){(\{f_n\}_{n\in\mathbb{N}},\{h_n\}_{n\in\mathbb{N}})},
F:l2H,     F({cn}n ? \mathbbN )=?n cn fn,F:\ell^2\to\,\mathcal{H}, \quad F\left(\{c_n\}_{n\in\mathbb{N}} \right)=\sum_n c_n f_n,  相似文献   

18.
19.
20.
The first part of this paper is devoted to the study of FN{\Phi_N} the orthogonal polynomials on the circle, with respect to a weight of type f = (1 − cos θ) α c where c is a sufficiently smooth function and ${\alpha > -\frac{1}{2}}${\alpha > -\frac{1}{2}}. We obtain an asymptotic expansion of the coefficients F*(p)N(1){\Phi^{*(p)}_{N}(1)} for all integer p where F*N{\Phi^*_N} is defined by F*N (z) = zN [`(F)]N(\frac1z) (z 1 0){\Phi^*_N (z) = z^N \bar \Phi_N(\frac{1}{z})\ (z \not=0)}. These results allow us to obtain an asymptotic expansion of the associated Christofel–Darboux kernel, and to compute the distribution of the eigenvalues of a family of random unitary matrices. The proof of the results related to the orthogonal polynomials are essentially based on the inversion of the Toeplitz matrix associated to the symbol f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号