首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CeO2, Ce1–xZrxO2, and Ce1–xYxO2–δ (x = 0.25, 0.50, 0.75, and 1.00) have been rapidly synthesized to estimate their catalytic behavior in decomposing CH3SH. The role of oxygen vacancies, and the relationship between the oxygen species and catalytic properties of CeO2 and Zr-doped and Y-doped ceria-based materials are investigated in detail. Combining the observed catalytic performance with the characterization results, it can be deemed that surface lattice oxygen plays a critical role in methanethiol catalytic conversion over cerium oxides. Ce0.75Zr0.25O2 shows higher catalytic activity for CH3SH decomposition due to the large amount of surface lattice oxygen, readily available oxygen species, and excellent redox properties. Ce0.75Y0.25O2–δ displays better catalytic stability owing to the greater number of oxygen vacancies that would promote bulk lattice oxygen migration to the surface of the catalyst in order to replenish surface lattice oxygen. In addition, the results show that the difference in chemical valence between Ce and the heteroatoms would strongly influence the amount of surface lattice oxygen as well as the mobility of bulk-phase oxygen in these catalysts, thus affecting their activity and stability.  相似文献   

2.
Ce1?x Ti x O2 nanocomposites supported on attapulgite clay (Ce1?x Ti x O2/ATP) were prepared by a facile sol–gel route. The textural and structural properties of the prepared products were characterized by thermogravimetric-differential scanning calormetry analysis, X-ray diffraction, transmission electron microscopy, energy-dispersive spectrometry, Fourier transform infrared spectroscopy and Nitrogen adsorption-desorption measurements. The catalytic activity of the prepared Ce1?x Ti x O2/ATP catalysts for rhodamine B degradation was investigated. Results indicate that the particle size of Ce1?x Ti x O2 nanoparticles evenly attached onto the surface of ATP is approximately 10 nm. The Ti4+ doping ratios exhibit considerable impact on the redox ability and catalytic activity of Ce1?x Ti x O2/ATP composites. The introduction of an optimal amount of Ti4+ contributes to forming structure defects and electronic defects in the oxide lattice, increasing concentration of oxygen vacancies, consequently improving low-temperature redox ability of Ce4+ and enhancing catalytic activity of the composites. Ce1?x Ti x O2/ATP (x = 0.5) catalyst has the best catalytic degradation efficiency, which can reach as high as 97 % after reaction for 240 min. It is also found that attapulgite clay exhibit a positive synergistic effect to the Ce1?x Ti x O2 nanoparticles.  相似文献   

3.
A dual-site catalyst allows for a synergetic reaction in the close proximity to enhance catalysis. It is highly desirable to create dual-site interfaces in single-atom system to maximize the effect. Herein, we report a cation-deficient electrostatic anchorage route to fabricate an atomically dispersed platinum–titania catalyst (Pt1O1/Ti1−xO2), which shows greatly enhanced hydrogen evolution activity, surpassing that of the commercial Pt/C catalyst in mass by a factor of 53.2. Operando techniques and density functional calculations reveal that Pt1O1/Ti1−xO2 experiences a Pt−O dual-site catalytic pathway, where the inherent charge transfer within the dual sites encourages the jointly coupling protons and plays the key role during the Volmer–Tafel process. There is almost no decay in the activity of Pt1O1/Ti1−xO2 over 300 000 cycles, meaning 30 times of enhancement in stability compared to the commercial Pt/C catalysts (10 000 cycles).  相似文献   

4.
A dual‐site catalyst allows for a synergetic reaction in the close proximity to enhance catalysis. It is highly desirable to create dual‐site interfaces in single‐atom system to maximize the effect. Herein, we report a cation‐deficient electrostatic anchorage route to fabricate an atomically dispersed platinum–titania catalyst (Pt1O1/Ti1?xO2), which shows greatly enhanced hydrogen evolution activity, surpassing that of the commercial Pt/C catalyst in mass by a factor of 53.2. Operando techniques and density functional calculations reveal that Pt1O1/Ti1?xO2 experiences a Pt?O dual‐site catalytic pathway, where the inherent charge transfer within the dual sites encourages the jointly coupling protons and plays the key role during the Volmer–Tafel process. There is almost no decay in the activity of Pt1O1/Ti1?xO2 over 300 000 cycles, meaning 30 times of enhancement in stability compared to the commercial Pt/C catalysts (10 000 cycles).  相似文献   

5.
We report systematic studies on the relations among the CeIV-for-NdIII substitution level (x), oxygen-partial pressure (PO2), oxygen content (4+δ), lattice parameters (a, c) and superconductivity characteristics (Tc, volume fraction) in the (Nd1−xCex)2Cu1−yO4+δ system which includes electron-doped superconductors. Independent of the Ce-doping level x, samples synthesized in air are found oxygen deficient, i.e. δ<0. Nevertheless, reductive annealing is needed to induce superconductivity in the air-synthesized samples. At the same time, the amount of oxygen removed upon the annealing is found very small (e.g. 0.004 oxygen atoms per formula unit at x=0.075), and consequently the effect of the annealing on the valence of copper (and thereby also on the electron doping level) is insignificant. Rather, the main function of the reductive annealing is likely to repair the Cu vacancies believed to exist in tiny concentrations (y) in the air-synthesized samples.  相似文献   

6.
The oxygen storage capacity of CeO2, Ce0.9Pr0.1O2, Pt?Rh/CeO2 and Pt?Rh/Ce0.9Pr0.1O2 was investigated by conventional GC pulse method and transient pulse techniques. It is shown that incorporation of PrOy into CeO2 matrix strongly promotes oxygen storage capacity (OSC) measured using the transient pulse technique. The improvement of OSC at low temperature is observed in Pt?Rh loaded onto CeO2 and Ce?Pr catalysts.  相似文献   

7.
Pt/Eu2O3-CeO2 materials with different Eu concentrations were prepared and applied to toluene destruction, and the remarkable promotion impact of EuOx on Pt/CeO2 can be observed. The characterization results reveal that the presence of EuOx significantly enhances the redox property, lattice O concentration, and Ce3+ ratio of the Pt/CeO2 material, which facilitates the dispersion and activity of Pt active sites and thus accelerates the decomposition process of toluene. Among all catalysts, a sample with an Eu content of 2.5 at.% (Pt/EC-2.5) possesses the best catalytic activity with 0.09 vol% of toluene completely destructed at 200 °C under a relatively high GHSV of 50000 h?1. The possible reaction pathway and mechanism of toluene combustion over Pt/Eu2O3-CeO2 samples are presented according to in-situ DRIFTS, which confirms that the toluene oxidation process obeys the Mars-van Krevelen mechanism with aldehydes and ketones as primary organic intermediates.  相似文献   

8.
CeO2 and Ce1−xMxO2−δ (M=Zr, Ti, Pr, Y and Fe) nanocrystallites of 5-10 nm sizes have been synthesized by hydrothermal method using diethylenetriamine (DETA) and melamine as complexing agents. Compounds have been characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX) and their structures have been refined by the Rietveld method. All the compounds crystallize in cubic fluorite structure. Even up to 50% Zr and Y, 40% Ti, 25% Pr and 15% Fe is substituted for Ce4+ in CeO2 by this method. Sizes of crystallites can be tuned by changing the complexing agent and reaction temperature. Nanocrystalline CeO2 and Ce1−xZrxO2 prepared here have higher or at least competitive oxygen storage capacity (OSC) than those reported in literature. Ce1−xFexO2−δ shows higher OSC and higher percentage of CO oxidation at lower temperature than Ce1−xZrxO2.  相似文献   

9.
Pt/Cs-BEA materials prepared by a classical ion-exchange procedure using two Cs-BEA supports with different Cs loadings, and a reference acidic Pt/H-BEA, have been studied to investigate the effect of the framework basicity (evaluated by FT-IR of adsorbed CO2) on the state of platinum species after the initial steps (introduction of Pt complex by ion-exchange and subsequent calcination) of the preparation procedure. DR-UV data revealed that the framework basicity affects the structure of the Pt2+ complexes introduced as countercations in the zeolite by ion exchange. FT-IR spectra of adsorbed CO indicated that zeolite basicity rules the fate of platinum species in the subsequent calcination. Hence, in Pt/H-BEA essentially well dispersed Ptδ+ (4≥δ≥1) are present, while PtO x particles progressively prevail as the basic character of the zeolite increases.  相似文献   

10.
The effect of Sm doping on CeO2 for its use as a solid electrolyte material for intermediate temperature solid oxide fuel cells (IT-SOFCs) has been explored here. Ce1−xSmxO2−δ (x = 0.1–0.3) samples are successfully synthesized by carbonate co-precipitation method. TG–DTA, XRD, Raman, UV–Vis, FT-IR, SEM and ac-impedance are used for structural and electrical characterization. From the XRD patterns, well-crystalline cubic fluorite structured solid solution is confirmed. Lattice parameters increased with increase in Sm3+ while the crystallite size decreased. The optical absorption spectra exhibits a red shift for Sm3+ doped CeO2. Raman spectra show an intense peak at 463 cm−1, a characteristic peak for doped ceria. SEM shows cluster like particles. Based on ac-impedance data, the total oxygen ionic conductivity is highest for Ce0.8Sm0.2O2−δ in the temperature range of 473–623 K.  相似文献   

11.
Alloy catalysts of Pt50Au50/CexC with various Ce additions (x) were prepared for the oxygen reduction reaction (ORR). The characterization of the alloy structures, surface species, and electro-catalytic activities of prepared alloy catalysts were performed by XRD, temperature-programmed reduction (TPR), and rotating disc electrode (RDE) technique, respectively. The ORR activity of Pt50Au50/C alloy catalyst with a promotion of 15% CeO2 was enhanced significantly in comparison to the commercial Pt/C catalyst within the mixed kinetic-diffusion control region. The addition of CeO2 decreased the particle sizes, increased the dispersion and enhanced the surface segregation of Pt which resulting in an alloy surface with a moderate oxophilicity on alloy catalysts.  相似文献   

12.
Strontium additions in (La1?x Sr x )1?y Mn0.5Ti0.5O3?δ (x?=?0.15–0.75, y?=?0–0.05) having a rhombohedrally distorted perovskite structure under oxidizing conditions lead to the unit cell volume contraction, whilst the total conductivity, thermal and chemical expansion, and steady-state oxygen permeation limited by surface exchange increase with increasing x. The oxygen partial pressure dependencies of the conductivity and Seebeck coefficient studied at 973–1223?K in the p(O2) range from 10?19 to 0.5?atm suggest a dominant role of electron hole hopping and relatively stable Mn3+ and Ti4+ states. Due to low oxygen nonstoichiometry essentially constant in oxidizing and moderately reducing environments and to strong coulombic interaction between Ti4+ cations and oxygen anions, the tracer diffusion coefficients measured by the 18O/16O isotopic exchange depth profile method with time-of-flight secondary-ion mass spectrometric analysis are lower compared to lanthanum–strontium manganites. The average thermal expansion coefficients determined by controlled-atmosphere dilatometry vary in the range 9.8–15.0?×?10?6?K?1 at 300–1370?K and oxygen pressures from 10?21 to 0.21?atm. The anodic overpotentials of porous La0.5Sr0.5Mn0.5Ti0.5O3?δ electrodes with Ce0.8Gd0.2O2-δ interlayers, applied onto LaGaO3-based solid electrolyte, are lower compared to (La0.75Sr0.25)0.95Cr0.5Mn0.5O3?δ when no metallic current-collecting layers are introduced. However, the polarization resistance is still high, ~2 Ω?×?cm2 in humidified 10?% H2–90?% N2 atmosphere at 1073?K, in correlation with relatively low electronic conduction and isotopic exchange rates. The presence of H2S traces in H2-containing gas mixtures did not result in detectable decomposition of the perovskite phases.  相似文献   

13.
Complex vanadium and titanium oxides modified by copper ions are studied by the electrochemical and ESR methods. Oxides Cu x V2?y Ti y O5?δ·nH2O (0<y<1.33) have a layered structure and oxides Cu x Ti1?y V y O5+δ·nH2O (0<y<0.25), an anatase structure. The intercalation of cations Cu2+ into the hydrates leads to oxidation of V4+. According to ESR data, V4+ exists in the oxides in the form of VO2+ and an octahedral surround of oxygen (V4+?O6), respectively. The electroreduction of ions of d-elements and chemisorbed oxygen in the oxides is analyzed. The intercalation of cations Cu2+ alters the content of V4+ and the chemisorption ability of the oxides. Possible reasons for this phenomenon are discussed.  相似文献   

14.
The non-linear thermal expansion behaviour observed in Ce1−yPryO2−δ materials can be substantially controlled by Gd substitution. Coulometric titration shows that the charge compensation mechanism changes with increasing x, in the system GdxCe0.8−xPr0.2O2−δ. For x=0.15, charge compensation is by vacancy formation and destabilises the presence of Pr4+. At x=0.2, further Gd substitution is charge compensated by additionally raising the oxidation state of Pr rather than solely the creation of further oxygen ion vacancies. Oxygen concentration cell e.m.f. measurements in an oxygen/air potential gradient show that increasing Gd content decreases ionic and electronic conductivities. Ion transference numbers measured under these conditions show a positive temperature dependence, with typical values to=0.90,0.98 and 0.80 for x=0,0.15 and 0.2, respectively, at 950 °C. These observations are discussed in terms of defect association. Oxygen permeation fluxes are limited by both bulk ambipolar conductivity and surface exchange. However, the composition dependent trends in permeability are shown to be dominated by ambipolar conductivities, and limited by the level of electronic conductivity. At the highest temperatures, oxygen permeability of composition x=0.2 approaches that of composition x=0, Ce0.8Pr0.2O2−δ, with specific oxygen permeability values approximately 2×10−9 mol s−1 cm−1 at 950 °C, but offering much better thermal expansion properties.  相似文献   

15.
方钧  石富城  包蕙质  千坤  姜志全  黄伟新 《催化学报》2013,34(11):2075-2083
利用X射线衍射、N2吸附等温线、X射线光电子能谱、X射线吸收谱、H2-程序升温还原、甲基橙选择化学吸附和等电点测定等方法研究了共沉淀方法制备的一系列CexTi1-xO2复合氧化物的结构. 成功发展了甲基橙选择化学吸附和等电点方法研究CexTi1-xO2复合氧化物的最外层表面结构, 并定义了“等价CeO2表面覆盖度”来描述CexTi1-xO2复合氧化物的最外层表面结构. CexTi1-xO2复合氧化物 (x ≥ 0.7)形成立方萤石相固溶体, Ce0.3Ti0.7O2表现出纯的单斜相, 而其它复合氧化物表现出混合相. CexTi1-xO2复合氧化物最外层表面结构的演变行为不同于其体相结构.Ce0.7Ti0.3O2立方萤石相固溶体最外层表面已经部分形成了单斜相Ce0.3Ti0.7O2, 随Ce含量的降低, 单斜相Ce0.3Ti0.7O2从最外层表面向体相生长. CexTi1-xO2复合氧化物立方萤石相固溶体和单斜相Ce0.3Ti0.7O2分别在相对较低和较高的温度表现出好的还原性能. 上述结果提供了全面和深层次的CexTi1-xO2复合氧化物结构信息.  相似文献   

16.
研究了低于300 ℃时两种氧化铈对稀燃阶段NOx存储性能的影响,催化剂由2%(w)Pt/Al2O3(PA)与CeO2-X(X=S,I)机械混合制备. X射线衍射(XRD),BET表面积和扫描电子显微镜(SEM)用于表征材料的物理结构. X射线光电子能谱(XPS)和H2程序升温还原(H2-TPR)用于表面Ce3+和活性氧定量. 原位漫反射傅里叶变换红外光谱(in-situ DRIFTS)用于分析表面NOx吸附物种. 相比于CeO2-I,CeO2-S 具有优良的物理化学性能,包括高比表面积、丰富的空隙结构、较高的抗老化能力及表面Ce3+浓度. 因而,Pt/Al2O3+CeO2-S 表现出优异的NOx存储能力. 此外,PA+CeO2-X(X=S,I)上存在Pt 与CeO2之间的相互作用,可提高表面氧物种的活性进而促进NO氧化及NOx存储. PA+CeO2-S上的这种相互作用要强于PA+CeO2-I. 研究表明,表面Ce3+浓度和活性氧含量对NOx存储起到重要作用. 然而经过水热处理后,Pt 与老化的氧化铈(ACS,ACI)之间的相互作用降低,并且两种氧化铈NOx存储性能显著下降. 另外,与PA+ACS(ACI)相比,PA+PACS(PACI)样品NOx存储能力得到改善,这归因于表面氧物种活性增加能促进硝酸盐的形成.  相似文献   

17.
    
A completely automated temperature-programmed reaction (TPR) system for carrying out gas-solid catalytic reactions under atmospheric flow conditions is fabricated to study CO and hydrocarbon oxidation, and NO reduction. The system consists of an all-stainless steel UHV system, quadrupole mass spectrometer SX200 (VG Scientific), a tubular furnace and micro-reactor, a temperature controller, a versatile gas handling system, and a data acquisition and analysis system. The performance of the system has been tested under standard experimental conditions for CO oxidation over well-characterized Ce1−−x−y Ptx(La/Y)yO2-δ catalysts. Testing of 3-way catalysis with CO, NO and C2H2 to convert to CO2, N2 and H2O is done with this catalyst which shows complete removal of pollutants below 325°C. Fixed oxide-ion defects in Pt substituted Ce1−y (La/Y) y O2−y/2 show higher catalytic activity than Pt ion-substituted CeO2. Dedicated to Prof J Gopalakrishnan on his 62nd birthday.  相似文献   

18.
The effects of doping the mixed-conducting (La,Sr)FeO3−δ system with Ce and Nb have been examined for the solid-solution series, La0.5−2xCexSr0.5+xFeO3−δ (x = 0–0.20) and La0.5−2ySr0.5+2yFe1−yNbyO3−δ (y = 0.05–0.10). Mössbauer spectroscopy at 4.1 and 297 K showed that Ce4+ and Nb5+ incorporation suppresses delocalization of p-type electronic charge carriers, whilst oxygen nonstoichiometry of the Ce-containing materials increases. Similar behavior was observed for La0.3Sr0.7Fe0.90Nb0.10O3−δ at 923–1223 K by coulometric titration and thermogravimetry. High-temperature transport properties were studied with Faradaic efficiency (FE), oxygen-permeation, thermopower and total-conductivity measurements in the oxygen partial pressure range 10−5–0.5 atm. The hole conductivity is lower for the Ce- and Nb-containing perovskites, primarily as a result of the lower Fe4+ concentration. Both dopants decrease oxide-ion conductivity but the effect of Nb-doping on ionic transport is moderate and ion-transference numbers are higher with respect to the Nb-free parent phase, 2.2 × 10−3 for La0.3Sr0.7Fe0.9Nb0.1O3−δ cf. 1.3 × 10−3 for La0.5Sr0.5FeO3−δ at 1223 K and atmospheric oxygen pressure. The average thermal expansion coefficients calculated from dilatometric data decrease on doping, varying in the range (19.0–21.2) × 10−6 K−1 at 780–1080 K.  相似文献   

19.
The Ruddlesden-Popper ferrite Sr3Fe2O6+δ and its titania-doped derivatives Sr3Fe2−xTixO6+δ, where 0<x≤2, have been characterized by X-ray powder diffraction and thermogravimetry. The changes in oxygen content and crystal lattice parameters are consistent with titanium ions entering the solid solution in 4+ oxidation state with octahedral oxygen coordination. Electronic conductivity measurements on polycrystalline Sr3Fe2O6+δ and Sr3Fe0.8Ti1.2O6+δ in the temperature range 750-1000°C and oxygen partial pressures (pO2) varying between 10−20 and 0.5 atm revealed that the predominant partial conductivity of electrons is proportional to pO2−1/4 in the low pO2 region, while the predominant partial contribution of holes to the conductivity is proportional to pO2+1/4 in the high pO2 range. The pressure-independent oxygen ion conductivity is found to decrease with the increase in titanium content. A possible pathway for oxygen ion migration is discussed in relation to disorder in the oxygen sublattice and titanium doping.  相似文献   

20.
A sub-solidus phase evolution study was done in CeO2-Sc2O3 and CeO2-Lu2O3 systems under slow-cooled conditions from 1400 °C. Long-range order probing of X-ray diffraction technique is utilized in conjunction with the ability of Raman spectroscopy to detect the changes in local co-ordination. Lu2O3 showed solubility of 30 mol% in CeO2, thus forming an anion deficient fluorite-type (F-type) solid solution, whereas Sc2O3 did not show any discernible solubility. A biphasic region (F+C) was unequivocally detected by Raman spectroscopy in Ce1−xLuxO2−x/2 (0.4?x?0.9) and in Ce1−xScxO2−x/2 (0.1?x?0.9) systems. Raman spectroscopy was valuable in studying these systems since oxygen vacancies are created on doping RE2O3 into ceria and Raman spectroscopy is very much sensitive to oxygen polarizability and local coordination. Back scattered images collected on representative compositions support the above-mentioned results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号