首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We have synthesized two cyclam‐cored dendrimers appended with dendrons of two different types by proper protection/deprotection of the cyclam unit. The resulting dendrimers contain six naphthyl and two dansyl units ( N6 D2 ) or two dansyl and six naphthyl units ( N2 D6 ) at the periphery. Their photophysical properties have been compared to those of a dendrimer containing 8 dansyl units ( D8 ) and a previously investigated dendrimer containing 8 naphthyl units ( N8 ). The absorption spectra are those expected on the basis of the number of chromophores, demonstrating that no ground state interaction takes place. The emission spectra of N2 D6 and N6 D2 show naphthalene localized and naphthalene excimer emission similar to those observed in the case of N8 , together with a much stronger dansyl emission with maximum at 525 nm. Addition of CF3SO3H to dendrimer solutions in CH3CN/CH2Cl2 1:1 (v/v) leads to protonation of the aliphatic amine units of the cyclam core at first and then of the aromatic amine of each dansyl chromophores. Cyclam can be diprotonated and this affects dansyl absorption and, most significantly, emission bands by a charge perturbation effect. Each dansyl unit is independently protonated in both dendrimers. The most interesting photophysical feature of these heterofunctionalized cyclam‐cored dendrimers is the occurrence of an intradendrimer photoinduced energy transfer from naphthyl to dansyl chromophores of two different dendrons (interdendron mechanism). The efficiency of this process is 50 % for N6 D2 and it can be increased up to 75 % upon protonation of the cyclam core and formation of N6 D2 (2H+). This arises from the fact that protonation of the amine units of the cyclam prevents formation of exciplexes upon naphthyl excitation, thus shutting down one of the deactivation processes of the fluorescent naphthyl excited state.  相似文献   

2.
We have investigated the self‐assembly of three luminescent species in CH3CN/CH2Cl2, namely: 1) a polylysin dendrimer ( D ) composed of 21 aliphatic amide units and 24 green luminescent dansyl chromophores at the periphery, 2) a molecular clip ( C ) with two blue luminescent anthracene sidewalls and a benzene bridging unit that bears two sulfate groups in the para position, and 3) a near infrared (NIR)‐emitting Nd3+ ion. For purposes of comparison, analogous systems have also been investigated in which Gd3+ replaced Nd3+. The dendrimer and the clip can bind Nd3+ ions with formation of [ D? 2 Nd3+] and [ C? Nd3+] complexes, in which energy transfer from dansyl and, respectively, anthracene to Nd3+ ion takes place with 65 and 8 % efficiency, in air‐equilibrated solution. In the case of [ C? Nd3+], the energy‐transfer efficiency is quenched by dioxygen, thereby showing that the energy donor is the lowest triplet excited state of anthracene. In [ D? 2 Nd3+] the intrinsic emission efficiency of Nd3+ is much higher (ca. 5 times) than in [ C? Nd3+] because of a better protection of the excited lanthanide ion towards nonradiative deactivation caused by interaction with solvent molecules. By mixing solutions of D , Nd3+, and C with proper concentrations, a supramolecular structure with five components of three different species, [ D? 2 Nd3+ ? 2 C ], is formed. The excitation light absorbed by the clips is transferred with 100 % efficiency to the dansyl units of the dendrimer and then to the Nd3+ ions with 65 % efficiency either in the presence or absence of dioxygen. These results show that the [ D? 2 Nd3+ ? 2 C ] complex is able to efficiently harvest UV light by the 24 dansyl units of the dendrimer and the four anthracene chromophores of the two clips, and efficiently transfer it to the encapsulated Nd3+ ions that emit in the NIR spectral region.  相似文献   

3.
We have investigated the formation of metal complexes between Zn2+ and two derivatives, 1 and 2, of the well-known 1,4,8,11-tetraazacyclotetradecane (cyclam) ligand. Compound 1 is 1,4,8,11-tetrakis(naphthylmethyl) cyclam, and compound 2 is a dendrimer consisting of a cyclam core with appended 12 dimethoxybenzene and 16 naphthyl units. Compound 1 exhibits an emission band with a maximum around 480 nm, assigned to the formation of exciplexes between amine and excited naphthyl units. Dendrimer 2 exhibits three types of weak emission bands, assigned to naphthyl localized excited states (lambdamax = 337 nm), naphthyl excimers (lambdamax ca. 390 nm), and naphthyl-amine exciplexes (lambdamax = 480 nm). In CH3CN-CH2Cl2 1:1 v/v, titration of ligand 1 with Zn2+ causes the disappearance of the exciplex emission and the appearance of a strong naphthyl localized fluorescence; the titration plot is linear and reaches a plateau for a 1:1 stoichiometry, showing that a highly stable [Zn(1)]2+ complex is formed. In the case of 2, titration with Zn2+ causes the disappearance of the exciplex band, with a concomitant increase in the excimer and naphthyl localized emissions; the titration plot is again linear, but in this case it reaches a plateau for a 2:1 stoichiometric ratio, showing the unexpected formation of a [Zn(2)2]2+ complex. Such an unexpected stoichiometry for the complex of the dendritic ligand has been fully confirmed by 1H NMR titrations. The results obtained show that the dendrimer branches not only do not hinder, but in fact favor coordination of cyclam to Zn2+.  相似文献   

4.
We report the absorption spectra and the photophysical properties (fluorescence spectrum, quantum yield, and lifetime) of four dendrimers of the poly(propylene amine) family (POPAMs) functionalized at the periphery with naphthylsulfonamide (hereafter called naphthyl) units. Each dendrimer Gn, where n = 1 to 4 is the generation number, comprises 2n + 1 (i.e., 32 for G4) naphthyl functions in the periphery and 2n + 1--2 (i.e., 30 for G4) tertiary amine units in the branches. All the experiments have been carried out in acetonitrile solutions. Comparison with two reference compounds (N-methyl-naphthalene-2-sulfonamide, A, and N-(3-dimethylamino-propyl)-2-naphthalene-1-sulfonamide, B) has shown that the absorption spectra of the dendrimers are significantly different from those expected from the component units. Furthermore, the intense fluorescence band of the naphthyl unit (lambda max = 343 nm; phi = 0.15, tau = 8.5 ns) is strongly quenched in the dendrimers. The quenching effect increases with increasing generation and is accompanied by the appearance of a weak and broad emission tail at lower energy. Protonation of the amine units of the dendrimers by addition of CF3SO3H (triflic) acid causes a strong increase in the intensity of the naphthyl luminescence and a change in the form of the emission tail. The shapes of the titration curves depend on dendrimer generation, but in any case, the effect of the acid can be fully reversed by successive addition of a base (tributylamine). The results obtained show that in the dendrimers there are interactions (both in the ground and excited states) between naphthyl units as well as between naphthyl units and amine units of the branches; this gives rise to dimer/excimer and charge-transfer/exciplex excited states. Titration with Zn(CF3SO3)2 has the same effect as acid titration, as far as the final emission spectrum is concerned, but a much higher concentration of Zn(CF3SO3)2 has to be used and the shapes of the titration plots are very different. Titration with Co(NO3)2.6H2O causes a much smaller increase in the intensity of the naphthyl fluorescence compared with Zn(CF3SO3)2. The results obtained have shown that protonation and metal coordination can reveal the presence of ground and excited state electronic interactions in functionalized poly(propylene amine) dendrimers, and that the presence of photo-active units in the dendrimers can be useful to reveal some peculiar aspects of the protonation and metal coordination processes.  相似文献   

5.
The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.  相似文献   

6.
A poly(amine ester) dendrimer with naphthyl units (G1N6) has been synthesized as a fluorescent chemosensor for metal ions. We investigated the metal-ion recognition of G1N6 by adding each of Ag(+), Al(3+), Ba(2+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Mg(2+), Ni(2+), and Zn(2+) in acetonitrile solution. Large changes were observed in the fluorescence spectra of G1N6 upon the addition of Al(3+), Cu(2+), and Zn(2+).  相似文献   

7.
A series of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives containing ion- and pH-sensory units have been successfully designed and synthesized. One of the compounds was structurally characterized by X-ray crystallography. Owing to the presence of an ICT absorption band, one of the compounds was found to show pronounced solvatochromic behavior in different organic solvents. Their emission energies in various solvents show a linear dependence on the Lippert solvent parameter. The cation-binding properties of the complexes with different metal ions (alkali metal, alkaline earth metal and transition metal ions) have been studied using UV-vis and emission spectroscopies. A 1?:?1 complexation to metal ions (Li(+), Na(+), Mg(2+), Ba(2+), Zn(2+), Cd(2+)) was found for the compound with one azacrown moiety in acetonitrile while another one with two azacrown moieties was shown to form 1?:?2 complexes with Zn(2+) and Mg(2+) cations. Their stability constants have been determined by both UV-vis and emission spectrophotometric methods. By introducing triarylborane moieties into the meso position and the 2-position of the BODIPY skeleton, different electronic absorption spectral changes together with an emission diminution were observed in response to fluoride ions. Ditopic binding study of 5, which was functionalized with both azacrown and triarylborane moieties, showed emission enhancement in the presence of Mg(2+) and F(-). These findings suggest that these BODIPY derivatives are capable of serving as versatile colorimetric and luminescence probes for pH, cations and F(-).  相似文献   

8.
A series of new heteroleptic and homoleptic Ru(II) complexes containing variously substituted bis(pyridyl)triazine ligands has been prepared and their absorption spectra, redox behaviour and luminescence properties (both in fluid solution at room temperature and in a rigid matrix at 77 K) have been investigated. For some compounds, X-ray structures have also been determined. The new bis(pyridyl)triazines incorporate additional chromophores, such as biphenyl, phenanthrene, anthracene and bromoanthracene derivatives, so the Ru(II) species can be considered as multichromophoric species. The absorption spectra and redox properties of all the metal complexes have been assigned to features belonging to specific subunits, thus suggesting that these species can be regarded as multicomponent, supramolecular assemblies from an electronic coupling point of view. Whereas most of the complexes exhibit luminescence properties that can be attributed to metal-to-ligand charge-transfer (MLCT) states involving the metal-based subunit(s), the species containing the anthryl and, even more, the brominated anthryl chromophores exhibit complicated luminescence behaviour. For example, 2 d (the anthryl-containing heteroleptic metal compound) exhibits MLCT emission at room temperature and emission from the anthracene triplet at 77 K; 2 e (the bromo-substituted anthryl-containing heteroleptic metal compound) exhibits anthryl-based emission at 77 K and MLCT emission at room temperature, but with a prolonged lifetime, thus suggesting equilibration between two triplet states that belong to different chromophores. The equilibration regime between MLCT and aromatic hydrocarbon triplet states is therefore reached by suitable substitution on the organic chromophore.  相似文献   

9.
The synthesis of a porphyrin compound, 1, containing a 2,9-dimethyl-1,10-phenanthroline moiety that is fused at the beta-pyrrole positions is reported. The absorption spectra of the free-base, copper(II), and zinc(II) derivatives have been studied. On the basis of absorption band intensities, the HOMO of the free base (H21) and its copper and zinc complexes (Cu1 and Zn1) was determined to be of a1u symmetry. Relative to H21, compounds Cul and Znl show enhanced spectral changes upon external metal ion binding. Although the HOMO is the same in all three compounds, the energy gap between the two highest occupied orbitals is greater for Cu1 and Zn1 than it is for the free-base compound. Several metal ions (Ni2+, Cu+, Cu2+, Zn2+, Li+) were examined in their binding to the phenanthrolinic group by measuring the resulting changes in the absorption spectra. It is shown that the observed changes in the absorption spectra are insensitive to the nature of the metal ion coordinated by the phenanthroline moiety. Significant differences in the absorption and emission spectra between Zn1 and [Zn(Zn1)2]2+ clearly demonstrate that the porphyrin pi-system is strongly affected by the binding of metal ions at the fused phenanthrolinic moiety.  相似文献   

10.
We have investigated the complexation of lanthanide ions (Nd3+, Eu3+, Gd3+, Tb3+, Dy3+) with three cyclam-based ligands (cyclam = 1,4,8,11-tetraazacyclotetradecane), namely 1,4,8,11-tetrakis(naphthylmethyl)cyclam (1), and two dendrimers consisting of a cyclam core appended with four dimethoxybenzene and eight naphthyl units (2) and twelve dimethoxybenzene and sixteen naphthyl units (3). In the free ligands the fluorescence of the naphthyl units is strongly quenched by exciplex formation with the cyclam nitrogens. Complexation with the metal ions prevents exciplex formation and revives the intense naphthyl fluorescence. Fluorescence and NMR titration experiments have revealed the formation of complexes with different metal/ligand stoichiometries in the case of 1, 2 and 3. Surprisingly, the large dendrimer 3 gives rise to a stable [M(3)3]3+ species. Energy transfer from the lowest singlet and triplet excited states of the peripheral naphthyl units to the lower lying excited states of Nd3+, Eu3+, Tb3+, Dy3+ coordinated to the cyclam core does not take place.  相似文献   

11.
本文基于Ir(Btp)2(acac)为发光内核,合成了一种外围为萘环的苄醚型树枝状红光铱配合物,并通过NMR、MS和元素分析实验表征了该配合物。利用紫外-可见吸收光谱与磷光光谱实验研究了该配合物对金属离子的识别作用。结果表明:在CH3CN/THF溶液中,仅Hg2+的加入能引起配合物的最大吸收峰和发射峰均发生蓝移,溶液颜色由桔黄色变为浅绿色。该配合物可作为识别汞离子的光化学传感器。  相似文献   

12.
The synthesis of 2,2'-dihydroxy-3,3'-di(carboxymethyl)-1,1'-binaphthyl (H2L) and its novel metal complexes with Co(II), Ni(II), Fe(III) and Th(IV) salts are reported. The ligand and its metal complexes have been characterized on the basis of analytical, conductance, spectral (IR, UV-vis, 1H NMR, mass) and magnetic susceptibility measurements. The M?ssbauer spectrum of the Fe(III) complex indicates a low-spin octahedral geometry around the Fe(III) ion. The IR and 1H NMR spectral data show that the ligand behaves in a dibasic bidentate fashion coordinating to two metal atoms through the two deprotonated naphthyl OH groups and acts in a dibasic tetradentate manner using both carbonyl oxygen's and the deprotonated naphthyl OH groups coordinating to two metal ions. Thermal studies (TGA, DTA) confirm the presence of solvents either inside or outside the coordination sphere and support the mechanism of the decomposition process. The value of [alpha]D20 for the ligand has been determined in DMSO.  相似文献   

13.
李鹏  曾毅  陈金平  李迎迎  李嫕 《化学学报》2012,70(15):1611-1616
设计合成了0~4代外围修饰激发态分子内质子转移(ESIPT)发色团的聚酰胺-胺树枝形聚合物G0~G4,化合物结构经过IR,1H NMR,13C NMR和MS表征.稳态光谱研究表明,树枝形聚合物在四氢呋喃溶液中形成了聚集体,发色团酮式发光随着化合物代数增大呈先增加后减小的变化.质子化树枝形聚合物G1-H~G4-H能溶于水,并在水中形成20 nm左右的聚集体,发色团在聚集体疏水区中构象受限,仅发射酮式发光,并且发光强度受树枝形聚合物分子大小的影响.  相似文献   

14.
1,4,8,11-tetraazacyclotetradecane (cyclam), which is one of the most extensively investigated ligands in coordination chemistry, in its protonated forms, can play the role of host toward cyanide metal complexes. We have investigated the acid-driven adducts formed in acetonitrile-dichloromethane (1:1 v/v) solution by [Ru(bpy)(CN)4](2-) with 1,4,8,11-tetrakis(naphthylmethyl)cyclam (1) and a dendrimer consisting of a cyclam core appended with 12 dimethoxybenzene and 16 naphthyl units (2). [Ru(bpy)(CN)4](2-), 1, and 2 exhibit characteristic absorption and emission bands, in distinct spectral regions, that are strongly affected by addition of acid. When a solution containing equimolar amounts of [Ru(bpy)(CN)4](2-) and 1 or 2 is titrated by trifluoroacetic acid, or when [Ru(bpy)(CN)4](2-) is titrated with (1.2H)2+ or (2.2H)2+, [[Ru(bpy)(CN)4](2-).(2H+).1] or [[Ru(bpy)(CN)4](2-).(2H+).2] adducts are formed in which the fluorescence of the naphthyl units is strongly quenched by very efficient energy transfer to the metal complex, as shown by the sensitized luminescence of the latter. The [[Ru(bpy)(CN)4]2-.(2H+).1] and [[Ru(bpy)(CN)4](2-).(2H+).2] adducts can be disrupted (i) by addition of a base (1,4-diazabicyclo[2.2.2]octane), yielding the starting species [Ru(bpy)(CN)4](2-) and 1 or 2, or (ii) by further addition of triflic acid, with formation of (1.2H)2+ or (2.2H)2+ and protonated forms of [Ru(bpy)(CN)4](2-). It is shown that upon stimulation with two chemical inputs (acid and base) both [[Ru(bpy)(CN)4](2-).(2H+).1] and [[Ru(bpy)(CN)4](2-).(2H+).2] exhibit two distinct optical outputs (a naphthalene-based and a Ru(bpy)-based emission) that behave according to an XOR and an XNOR logic, respectively.  相似文献   

15.
Pyridyl-based triazole-linked calix[4]arene conjugates, viz. L(1) and L(2), were synthesized and characterized. These two conjugates were shown to be selective and sensitive for Zn(2+) among the 12 metal ions studied in HEPES buffer medium by fluorescence, absorption, and visual color change with the detection limit of ~31 and ~112 ppb, respectively, by L(1) and L(2). Moreover, the utility of the conjugates L(1) and L(2) in showing the zinc recognition in live cells has also been demonstrated using HeLa cells as monitored by fluorescence imaging. The zinc complexes of L(1) and L(2) were isolated, and the structure of [ZnL(1)] has been established by single-crystal XRD and that of [ZnL(2)] by DFT calculations. TDDFT calculations were performed in order to demonstrate the electronic properties of receptors and their zinc complexes. The isolated zinc complexes, viz. [ZnL(1)] and [ZnL(2)], have been used as molecular tools for the recognition of anions on the basis of their binding affinities toward Zn(2+). [ZnL(2)] was found to be sensitive and selective toward phosphate-bearing ions and molecules and in particular to pyrophosphate (PPi) and ATP among the other 18 anions studied; however, [ZnL(1)] was not sensitive toward any of the anions studied. The selectivity has been shown on the basis of the changes observed in the emission and absorption spectral studies through the removal of Zn(2+) from [ZnL(2)] by PPi. Thus, [ZnL(2)] has been shown to detect PPi up to 278 ± 10 ppb at pH 7.4 in aqueous methanolic (1/2 v/v) HEPES buffer.  相似文献   

16.
A new tridentate benzimidazole ligand (L‐C11) containing undecyl chains and its Mn (II) and Zn (II) complexes were synthesised and characterized by spectroscopic and analytical methods. Molecular structures of complexes [Mn(L‐C11)Cl2] and [Zn(L‐C11)Cl2] were evaluated by X‐ray diffraction studies. The X‐ray data showed metal ions in both complexes are five‐coordinate with distorted square pyramidal geometry around the metal centres. The undecyl chains in the structure of the complexes are aligned in an interdigitated manner (head to tail) forming a non‐polar domain. The aggregation properties of the ligand and its complexes were investigated by UV–Vis. absorption and emission spectroscopies in DMF‐water mixtures. The emission spectral data revealed that the compounds showed aggregation induced quenching (AIQ) in DMF‐water solutions. Moreover, thermal properties of the compounds were investigated by TG, DTG and DSC analysis.  相似文献   

17.
Poly(amide amine) dendrimer with naphthyl units (N8) as a fluorescent chemosensor for metal ions was synthesized. We investigated the metal ion recognition of N8. Large changes in the fluorescence spectra of N8 were observed upon the addition of cadmium and zinc ions.  相似文献   

18.
The linear (absorption and emission) and nonlinear optical (NLO) properties of a series of D(3) [(Fe(II), Ru(II), Ni(II), Cu(II), Zn(II)] octupolar metal complexes featuring the 4,4'-bis[(dibutylamino)styryl]-2,2'-bipyridine ligand are reported. Zinc(II), nickel(II), and copper(II) complexes exhibit similar absorption spectra in the visible region (lambda(ILCT) = 474-476 nm) which are assigned to intraligand charge-transfer (ILCT) bands. The quadratic and cubic NLO properties are strongly influenced by the nature of the metallic center. Harmonic light scattering studies at lambda = 1.91 microm reveal that these chromophores display large first hyperpolarizabilities beta(1.91) in the range of (211-340) x 10(-30) esu; replacing the Zn(II) metal ion by Ni(II) or Cu(II) results in a decrease of the static beta(0) coefficient by a factor of 1.5-1.6. Z-scan measurements at 765 and 965 nm reveal relatively large two-photon absorption cross-sections [650 < sigma(2) < 2200 GM], showing that both beta and sigma(2) values can be tuned by simple modification of the metal ion.  相似文献   

19.
The molecular equilibrium structures, electronic structures, and one- and two-photon absorption (TPA) properties of C2v (Zn(II), Fe(II) and Cu(I)) dipolar and D2d (Zn(II) and Cu(I)) and D3 (Zn(II)) octupolar metal complexes featuring different functionalized bipyridyl ligands have been studied by the ZINDO-SOS method. The calculated results show that one- and two-photon absorption properties of metal complexes are strongly influenced by the nature of the ligands (donor end groups and pi linkers) and metal ions as well as by the symmetry of the complexes. The length of the pi-conjugated backbone, the Lewis acidity of the metal ions, and the increase of ligand-to-metal ratio result in a substantial enhancement of the TPA cross sections of metal complexes. Substitution of C=N and N=N for C=C plays an important role in altering the maximum TPA wavelengths and the maximum TPA cross sections of metal complexes. Of them, the C=N substituted metal complexes have relatively large TPA cross sections. Replacing styryl with thienylvinyl makes the one-photon absorption wavelength red shift and at the same time leads to a great decrease of the maximum TPA cross sections of metal complexes. The possible reason is discussed. In the range 500-1250 nm, octupolar metal complexes exhibit intense TPAs and therefore are promising candidates for TPA materials.  相似文献   

20.
Two new fluorene derivatized 1,10-phenanthroline ligands and related tris-chelate Ru(II) or Zn(II) coordination complexes have been synthesised. The linear and nonlinear (two-photon induced fluorescence) photophysical measurements have contributed to highlight the possibility to tune the absorption spectral range and excited lifetime, depending on ligand substitution and nature of the metal. More significantly, the observation of two-photon absorption (TPA) associated with long-lived metal-to-ligand charge-transfer (MLCT) excited states in the Ru(II)-based chromophores, opens a wide range of applications in the near infrared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号