首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 285 毫秒
1.
The coordination of olefins to square-planar Pd(II) and Pt(II) complexes containing 2,9-dimethylphenanthroline ( L1) often involves a change of color associated with a change of geometry at the metal center. In order to obtain suitable colorimetric detectors for ethylene gas, a series of new Pd(II) and Pt(II) compounds with a range of 2,9-disubstituted phenanthroline ligands [2,9-di- n-butyl-1,10-phenanthroline ( L2), 2,9-di- s-butyl-1,10-phenanthroline ( L3), 2,9-diphenyl-1,10-phenanthroline ( L4), and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, L5)] have been prepared and their reactivity toward ethylene investigated both in solution and after depositing the detector compounds on a variety of solid supports. The Pd(II) complex [PdCl 2( L2)] supported on silica undergoes a clear color change upon exposure to ethylene, while remaining stable toward air and water, and forms the basis for new simple colorimetric detectors with potential applications in ethylene pipe-leak detection and the monitoring of fruit ripening. Encouragingly, the detector is able to discriminate between fruit at different stages of ripening. The response of the detector to other volatiles was also examined, and specific color changes were also observed upon exposure to aromatic acetylenes. The crystal structures of four new derivatives, including the ethylene-Pt(II) complex [PtCl 2(C 2H 4)( L2)], are also described.  相似文献   

2.
New copper(II) complexes of general formula, Cu(ONS)B (ONS = the di-negatively charged Schiff base, S-benzyl-β-N-(2-hydroxyphenyl) methylendithiocarbazate; B = pyridine, 2,2′-dipyridyl or 1,10-phenanthroline) have been synthesized and characterised by magnetic and spectroscopic measurements. The complex, Cu(ONS)py is four-coordinate and square-planar. Magnetic and spectroscopic data support a five-coordinate, presumably, a trigonal-bipyramidal structure for the [Cu(ONS)dipy] and (Cu(ONS)phen] complexes  相似文献   

3.
A new dichloroplatinum(II) complex with 5-methyl-1,10-phenanthroline (1) has been obtained and characterized by X-ray diffraction. MTT assay was used for in vitro cytotoxicity evaluation of this complex, along with a similar complex with 4,7-diphenyl-1,10-phenanthroline (2) against normal and cancerous cell lines. Interestingly, the IC50 values of the new complexes were higher for normal cells and in the case of complex 2, lower against all studied human cancer cells, in comparison with cisplatin.  相似文献   

4.
A series of cationic palladium complexes of general formula [Pd(Me)(MeCN)(N-N)][PF(6)] (N-N = (phen) 1 a, 4,7-dichloro-1,10-phenanthroline (4,7-Cl(2)-phen) 2 a, 4,7-diphenyl-1,10-phenanthroline (4,7-Ph(2)-phen) 3 a, 4-methyl-1,10-phenanthroline (4-Me-phen) 4 a, 4,7-dimethyl-1,10-phenanthroline (4,7-Me(2)-phen) 5 a, 5,5,6,6-tetrafluoro-5,6-dihydro-1,10-phenanthroline (F(4)-phen) 6 a, containing different substituted phenanthroline ligands, have been prepared from the corresponding neutral chloro derivatives [Pd(Me)(Cl)(N-N)], (1 b-6 b). The X-ray crystal structure of [Pd(Cl)(2)(4,7-Cl(2)-phen)] (2 b') was determined. DFT calculations show that the electron density on the metal is tuned by the substituents on the ligands. The catalytic behavior of complexes 1 a-6 a in the CO/styrene and CO/p-Me-styrene copolymerizations was studied in detail, showing that the generated catalysts are active for at least 90 h, yielding copolymers of high molecular weight. A firm correlation between the electron density on palladium on the one hand and the catalytic activity of the complexes and the molecular weight and the stereochemistry of the polyketones synthesized on the other hand has been established: the catalyst containing the F(4)-phen is thus far the most active among those tested, yielding the syndiotactic CO/styrene copolymer with a stereoregularity of 96 % (uu triad) and with an M(w) value of 1 000 000.  相似文献   

5.
This study documents the first detailed investigation into the relationship between molecular structure and biological activity of platinum(II) complexes containing methylated derivatives of 1,10-phenanthroline (phen). A series of square planar platinum(II) compounds incorporating methylated derivatives of phen, 4-methyl-1,10-phenanthroline (4-Mephen), 5-methyl-1,10-phenanthroline (5-Mephen), 4,7-dimethyl-1,10-phenanthroline (4,7-Me2phen), 5,6-dimethyl-1,10-phenanthroline (5,6-Me2phen) and 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-Me4phen) were synthesised and the relationship between their structure and biological activity investigated. The biological activity of these compounds was quantified using the in vitro cytotoxicity assay against the L1210 Murine leukaemia cell line. Large variation in cytotoxicities with different methylation was observed. The 5- and 5,6-methylated derivatives of phen displayed a greater biological activity, with IC50 values of 2.8 +/- 0.8 microM and 1.5 +/- 0.3 microM respectively, compared with the phen compound, with an IC50 value of 9.7 +/- 0.3 microM, while all the others were inactive with IC50 values over 50 microM. Binding constants were determined using circular dichroism spectroscopy (CD) and induced circular dichroism (ICD). ICD was used to highlight any differences in the spectra. Viscometry studies and linear dichroism (LD) experiments indicate that the platinum(II) complexes intercalate although for [Pt(en)(4-Mephen)]Cl2 and [Pt(en)(4,7-Me2phen)]Cl2 this mode of binding appears to be concentration dependent. The binding of the platinum(II) complexes to the oligonucleotide d(GTCGAC)2 was studied using two-dimensional 1H NMR spectroscopy. The addition of each metal complex to the hexamer d(GTCGAC)2 produced upfield shifts of the metal complex resonances, characteristic of intercalation. Through the observation of NOE cross-peaks, two-dimensional NMR studies provided insight into the site and groove preferences of these compounds when binding to DNA.  相似文献   

6.
The gas-phase stabilities of Fe(Phi)3(2+) complexes, where Phi represents the 1,10-phenanthroline, 5-chloro-1,10-phenanthroline, 5-methyl-1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline, and 4,7-diphenyl-1,10-phenanthroline ligands were investigated by collision-induced dissociation (CID) in the capillary-first skimmer region upon changing the voltage difference between the capillary and the skimmer. The loss of only one ligand from the Fe(Phi)3(2+) complexes was observed with each of the phenanthroline ligands studied. An increase in the voltage difference between the capillary and the skimmer resulted in a higher fragmentation yield as calculated from the intensity of the precursor and the fragment ion. The fragmentation yield versus capillary-skimmer voltage difference plots were evaluated by means of the Arrhenius and the Rice-Ramsperger-Kassel (RRK) model by fitting the model parameters to the experimental data. Both models yielded practically the same results. In addition, if the internal energy gained through the capillary-skimmer region is estimated correctly, the approximate value of the critical energy (activation energy) for fragmentation can be extracted from the fragmentation yield versus capillary-skimmer voltage difference plots. It was found that the gas-phase stabilities of the Fe(Phi)3(2+) complexes are nearly identical except for the more stable Fe(II)-4,7-diphenyl-1,10-phenanthroline complex. The critical energy for fragmentation was estimated to be approximately 1.2 and 0.9 eV for the Fe(II)- 4,7-diphenyl-1,10-phenanthroline, and the other complexes, respectively.  相似文献   

7.
Hulanicki A  Nieniewska J 《Talanta》1974,21(8):896-899
The following ion-association systems were investigated spectrophotometrically: Fe(2,2'-bipyridyl)(3)(Methyl Orange)(2); Fe(1,10-phenanthroline)(3)(Methyl Orange)(2); Fe(4,7-diphenyl-1,10-phenanthroline)(3)(Methyl Orange)2; Fe(1,10-phenanthroline)(3)(Benzyl Orange)2; Fe(4,7-diphenyl-1,10-phenanthroline)(3)(Benzyl Orange)(2). The molar absorptivities may be calculated with good precision on the basis of the spectra of the reacting species (iron chelate and dye anion), their stoichiometry and the degree of extraction. Analytically the most useful is the Fe(1,10-phenanthroline)(3)(Methyl Orange)(2) complex, molar absorptivity 4.83 x 10(4) 1. mole(-1) cm(-1) at 420 nm, but many metals (Co, Cu, Ni, Zn, Cd) form similar extractable complexes and interfere.  相似文献   

8.
The evolution in basic medium ([RO-] = 1 M in methanol, R = H or Me) of five-coordinate platinum(II) compounds, [PtCl2(eta2-C2H4)(N-N)], 2a-c, (N-N = N,N,N',N'-tetramethyl-1,2-ethanediamine, a; 2,2'-bipyridyl, b; 1,10-phenanthroline, c) leads to the formation of [PtCl(eta1-CH2CH2-OCH3)(N-N)], 5a-c. The analogous compound 5d (N-N = 2,9-dimethyl-1,10-phenanthroline, d) can also be prepared, but not via transformation of the five-coordinate species 2d in basic medium where it is quite stable. 5d can instead be prepared by reaction of d with a strongly basic methanol solution of Zeise's anion [PtCl3(eta2-C2H4)](-), 1. In such a medium the di-anionic trans-[PtCl2(OR)(eta1-CH2CH2-OCH3)](2-) species (1") reacts with to form exclusively 5d. Hydrolysis of with acids bearing weakly coordinating anions leads to [PtCl(eta2-C2H4)(N-N)]+, 3a-c, as stable cations; upon the same treatment 5d does not generate 3d, but it reacts with HCl to give 2d in almost quantitative yield. Cationic complexes 3b, 3c, here reported for the first time, were reacted with some nucleophiles and their behaviour compared with that of the already known 3a. In 3b, 3c the metal centre competes with the coordinated ethene for binding to nucleophiles; therefore the acetylacetonate anion can either add to the olefin (affording compounds 6b, 6c ) or to the metal ion replacing the ethene ligand (yielding compounds 7b, 7c). Under similar conditions, 3a gives exclusively 6a. Secondary amines readily add to ethene in 3b, 3c, affording the addition products 8b, 8c, which undergo a ready cyclization to an azaplatinacyclobutane ring (9b, 9c). The remarkable ease of the four-membered ring formation has been related to the high electrophilic character of the metal core in 3b, 3c.  相似文献   

9.
We report here the design of the first class of luminescent biotinylation reagents derived from rhenium(I) polypyridine complexes. These complexes [Re(N-N)(CO)(3)(py-biotin-NCS)](PF(6)) (py-biotin-NCS = 3-isothiocyanato-5-(N-((2-biotinamido)ethyl)aminocarbonyl)pyridine; N-N = 1,10-phenanthroline (phen) (1a), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me(4)-phen) (2a), 4,7-diphenyl-1,10-phenanthroline (Ph(2)-phen) (3a)), containing a biotin unit and an isothiocyanate moiety, have been synthesized from the precursor amine complexes [Re(N-N)(CO)(3)(py-biotin-NH(2))](PF(6)) (py-biotin-NH(2) = 3-amino-5-(N-((2-biotinamido)ethyl)aminocarbonyl)pyridine; N-N = phen (1c), Me(4)-phen (2c), Ph(2)-phen (3c)). To investigate the amine-specific reactivity of the isothiocyanate complexes 1a-3a, they have been reacted with a model substrate ethylamine, resulting in the formation of the thiourea complexes [Re(N-N)(CO)(3)(py-biotin-TU-Et)](PF(6)) (py-biotin-TU-Et = 3-ethylthioureidyl-5-(N-((2-biotinamido)ethyl)aminocarbonyl)pyridine; N-N = phen (1b), Me(4)-phen (2b), Ph(2)-phen (3b)). All the rhenium(I) complexes have been characterized, and their photophysical properties have been studied. The avidin-binding properties of the thiourea complexes 1b-3b have been examined by the 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assay. Titration results indicated that the complexes exhibited emission enhancement by ca. 1.4-1.5-fold upon binding to avidin, and the lifetimes were elongated to ca. 0.8-2.0 micros. Additionally, we have biotinylated bovine serum albumin (BSA) with the isothiocyanate complexes. All the resultant rhenium-BSA bioconjugates displayed intense and long-lived orange-yellow to greenish-yellow emission upon irradiation in aqueous buffer under ambient conditions. The avidin-binding properties of the bioconjugates have been investigated using the HABA assay. Furthermore, the cytotoxicity of the thiourea complexes 1b-3b toward the HeLa cells has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC50 values were determined to be ca. 17.5-28.5 microM, which are comparable to that of cisplatin (26.7 microM) under the same conditions. The cellular uptake of complex 3b has been investigated by fluorescence microscopy, and the results showed that the complex was localized in the perinuclear region after interiorization.  相似文献   

10.
We report new divalent osmium complexes that feature strong red metal-to-ligand-charge-transfer (MLCT) phosphorescence and electrophosphorescence. The general formula of the complexes is Os(II)(N-N)(2)L-L, where N-N is either a bipyridine or a phenanthroline and L-L is either a phosphine or an arsine. New polypyridyl ligands synthesized are 4,4'-di(biphenyl)-2,2'-bipyridine (15) and 4,4'-di(diphenyl ether)-2,2'-bipyridine (16), and the 1,10-phenanthroline derivatives synthesized are 4,7-bis(p-methoxyphenyl)-1,10-phenanthroline (17), 4,7-bis(p-bromophenyl)-1,10-phenanthroline (18), 4,7-bis(4'-phenoxybiphen-4-yl)-1,10-phenanthroline (19), and 4,7-bis(4-naphth-2-ylphenyl)-1,10-phenanthroline (20). 4,4'-Diphenyl-2,2'-bipyridine (21) and 4,7-diphenyl-1,10-phenanthroline (22) were also used in these studies. Strong pi-acid ligands used were 1,2-bis(diphenylarseno)ethane (23), cis-1,2-bis(diphenylphosphino)ethylene (24), and cis-1,2-vinylenebis(diphenylarsine) (25). Ligand 25 is used for the first time in these types of luminescent osmium complexes. These compounds feature strong MLCT absorption bands in the visible region and strong red phosphorescent emission ranging from 611 to 651 nm, with quantum efficiency up to 45% in ethanol solution at room temperature. Red organic light-emitting diodes (OLEDs) were successfully fabricated by doping the Os(II) complexes into blend of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD). Brightness over 1400 cd/m(2) for a double-layer device has been reached, with a turn-on voltage of 8 V. The maximum external quantum efficiency was 0.64%. Commission Internationale de l'Eclairage (CIE) chromaticity coordinates (x, y) of the red electrophosphorescence from the complexes are (0.65, 0.34), which indicates pure red emission.  相似文献   

11.
Three novel Ru(II) complexes of the general formula [Ru(N-N)(2)(Norharman)(2)](SO(3)CF(3))(2), where N-N = 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), 4,7-diphenyl-1,10-phenanthroline (DIP, 3) and Norharman (9H-pyrido[3,4-b]indole) is a naturally occurring β-carboline alkaloid, have been synthesized and characterized. The molecular structures of 1 and 2 have been determined by X-ray diffraction analysis. The cellular uptake efficiencies, in vitro cytotoxicities and apoptosis-inducing properties of these complexes have been extensively explored. Notably, 1-3 exhibit potent antiproliferative activities against a panel of human cancer cell lines with IC(50) values lower than those of cisplatin. Further studies show that 1-3 can cause cell cycle arrest in the G0/G1 phase and induce apoptosis through mitochondrial dysfunction and reactive oxygen species (ROS) generation. In vitro DNA binding studies have also been conducted to provide information about the possible mechanism of action.  相似文献   

12.
The composition, structure, and properties of a series of Au(III) complexes with heterocyclic diimine ligands [Au(N^N)Cl2]+, where (N^N) = 2,2′-bipyridine (Bipy), 4,4′-dimethyl-2,2′-bipyridine (DmBipy), 2,2′-biquinoline (Bqx), 1,10-phenanthroline (Phen), 2,9-dimethyl-1,10-phenanthroline (DmPhen), and 4,7-diphenyl-1,10-phenanthroline (DphPhen), were characterized by 1H NMR, electronic absorption, and emission spectroscopy and also by cyclic voltammetry. The influence of donor and acceptor substituents on the spectroscopic and electrochemical properties of the Au(III) complexes was revealed.  相似文献   

13.
DFT B3LYP/LANL2DZ method was employed to calculate electron properties and the second-order nonlinear optical (NLO) respond of platinum (II) complexes which have been synthesized by Weinstein group. 4,7-diphenyl-1,10-phenanthroline shows the ability to push electron in these complexes. Metal Pt plays a balancing charge role. Comparing complex 1b–6b with complex a, the βvec value of complex 1b–5b is larger than one of complex a, while the βvec value of complex 6b is smaller than one of complex a. In these seven complexes, the βvec values of complexes increase with decreasing of the energy difference between HOMO and LUMO. Moreover, the electron transfers from deeper layer occupied orbitals to empty orbitals have a distinct contribution to second-order NLO coefficient. Supported by Program for Changjiang Scholars and Innovative Research Team in University, the Foundation of Jilin Provincial Excellent Youth (Grant No. 20050107) and Youth Science Foundation of Northeast Normal University (Grant No. 111494117)  相似文献   

14.
The photobehavior of complexes of the type Pt(diimine)(mes)2 is investigated (where diimine = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (tmp), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), and 4,7-diphenyl-1,10-phenanthroline (dpp) and mes = the mesityl (2,4,6-trimethylphenyl) anion). For all compounds studied, solution RT emission is observed to be weak and excited-state lifetimes are found to be short (< or = 20 ns) regardless of solvent choice. Evidence is presented for energy-transfer quenching of Pt(dpp)(mes)2 luminescence in toluene by dissolved O2 (primarily producing singlet oxygen) with an observed quenching rate constant of kq > or = 1.3 x 10(9) M-1 s-1. Electron-transfer quenching is also observed in the presence of 3,5-dinitrobenzonitrile, yielding a quenching rate constant of kq > or = 1.6 x 10(9) M-1 s-1. The latter observation suggests that phase Pt(II) systems may have future value as excited-state reductants. All of the complexes display a much more intense and longer-lived luminescence in the solid state at room temperature. Several possible explanations for this dependence on phase are proposed, with the most probable mechanism involving radiationless deactivation in solution via rotation of the o-methyl groups of the mesityl ligands.  相似文献   

15.
Lo KK  Tsang KH  Hui WK  Zhu N 《Inorganic chemistry》2005,44(17):6100-6110
We report the synthesis, characterization, and photophysical and electrochemical properties of a series of luminescent rhenium(I) diimine indole complexes, [Re(N-N)(CO)3(L)](CF3SO3) (N-N = 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4-phen), L = N-(3-pyridoyl)tryptamine (py-3-CONHC2H4-indole) (1a), N-[N-(3-pyridoyl)-6-aminohexanoyl]tryptamine, (py-3-CONHC5H10CONHC2H4-indole) (1b); N-N = 1,10-phenanthroline (phen), L = py-3-CONHC2H4-indole (2a), py-3-CONHC5H10CONHC2H4-indole (2b); N-N = 2,9-dimethyl-1,10-phenanthroline (Me2-phen), L = py-3-CONHC2H4-indole (3a), py-3-CONHC5H10CONHC2H4-indole (3b); N-N = 4,7-diphenyl-1,10-phenanthroline (Ph2-phen), L = py-3-CONHC2H4-indole (4a), py-3-CONHC5H10CONHC2H4-indole (4b)), and their indole-free counterparts, [Re(N-N)(CO)3(py-3-CONH-Et)](CF3SO3) (py-3-CONH-Et = N-ethyl-(3-pyridyl)formamide; N-N = Me4-phen (1c), phen (2c), Me2-phen (3c), Ph2-phen (4c)). The X-ray crystal structure of complex 3a has also been investigated. Upon irradiation, most of the complexes exhibited triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Re) --> pi*(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. However, the structural features and long emission lifetimes of the Me4-phen complexes in solutions at room temperature suggest that the excited state of these complexes exhibited substantial triplet intraligand (3IL) (pi --> pi*) (Me4-phen) character. The binding interactions of these complexes to indole-binding proteins including bovine serum albumin and tryptophanase have been examined.  相似文献   

16.
Five osmium(II) polypyridyl complexes of the general formula [Os(4,7-diphenyl-1,10-phenanthroline)2 L ]2+ were synthesized as photosensitizers for photodynamic therapy by varying the nature of the ligand L . Thanks to the pronounced π-extended structure of the ligands and the heavy atom effect provided by the osmium center, these complexes exhibit a high absorption in the near-infrared (NIR) region (up to 740 nm), unlike related ruthenium complexes. This led to a promising phototoxicity in vitro against cancer cells cultured as 2D cell layers but also in multicellular tumor spheroids upon irradiation at 740 nm. The complex [Os(4,7-diphenyl-1,10-phenanthroline)2(2,2′-bipyridine)]2+ was found to be the most efficient against various cancer cell lines, with high phototoxicity indexes. Experiments on CT26 tumor-bearing BALB/c mice also indicate that the OsII complexes could significantly reduce tumor growth following 740 nm laser irradiation. The high phototoxicity in the biological window of this structurally simple complex makes it a promising photosensitizer for cancer treatment.  相似文献   

17.
Lo KK  Hui WK 《Inorganic chemistry》2005,44(6):1992-2002
This paper describes the design of a series of luminescent rhenium(I) polypyridine biotin complexes containing different spacer-arms, [Re(N-N)(CO)3 (py-4-CH2-NH-biotin)](PF6) (py-4-CH2-NH-biotin = 4-(biotinamidomethyl)pyridine; N-N = 1,10-phenanthroline, phen (1a), 3,4,7,8-tetramethyl-1,10-phenanthroline, Me4-phen (2a), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, Me2-Ph2-phen (3a), dipyrido[3,2-f:2',3'-h]quinoxaline, dpq (4a)), [Re(N-N)(CO)3 (py-3-CO-NH-en-NH-biotin)](PF6) (py-3-CO-NH-en-NH-biotin = 3-(N-((2-biotinamido)ethyl)amido)pyridine; N-N = phen (1b), Me4-phen (2b), Me2-Ph2-phen (3b), dpq (4b)), and [Re(N-N)(CO)3 (py-4-CH2-NH-cap-NH-biotin)](PF6) (py-4-CH2-NH-cap-NH-biotin = 4-(N-((6-biotinamido)hexanoyl)aminomethyl)pyridine; N-N = phen (1c), Me4-phen (2c), Me2-Ph(2)-phen (3c), dpq (4c)). Upon irradiation, all of the rhenium(I)-biotin complexes exhibited intense and long-lived triplet metal-to-ligand charge-transfer (3MLCT) (d pi(Re) --> pi* (diimine)) emission in fluid solutions at 298 K. The interactions of these biotin-containing complexes with avidin have been studied by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, emission titrations, and competitive association and dissociation assays. On the basis of the results of these experiments, homogeneous assays for biotin and avidin have been designed.  相似文献   

18.
Eight mononuclear complexes of the formula [M(N-N)(DHB)] and two binuclear complexes of the formula [M2(BPY)2(THB)] where M = Pd(II) or Pt(II), N-N = 2,2′-bipyridine (BPY), 2,2′-biquinoline (BIQ), 4,7-diphenyl-1,10-phenanthroline (DPP), 1,10-phenanthroline (PHEN); DHB = dianion of 3,4-dihydroxybenzaldehyde and THB = tetraanion of 3,3′,4,4′-tetrahydroxy benzaldazine were prepared and their electrochemical, spectral and photophysical properties were examined. These complexes were characterized by chemical analysis, IR and proton NMR spectroscopy. A detailed study on the absorption spectroscopy of these complexes was made. These complexes were found to show a low-energy solvatochromic ligand-to-ligand charge-transfer (LLCT) band. The electronic energies of these bands have been analyzed and compared with electrochemical data. Emission behaviour of the complexes of the series, [Pt(N-N)(DHB)], [Pt(N-N)(DHBA)] where DHBA is the dianion of 3,4-dihydroxybenzoic acid and [Pt2(BPY)2(THB)] was also investigated. These platinum complexes were found to emit from a low-energy state at low temperature and a high-energy state at room temperature. Photophysics of these complexes is also discussed.  相似文献   

19.
We wish to report the synthesis, crystal structures, spectroscopic and electrochemical properties of several new Pt(II) heteroleptic complexes containing the thiacrown, 9S3 (1,4,7-trithiacyclononane) with a series of substituted phenanthroline ligands and related diimine systems. These five ligands are 5,6-dimethyl-1,10-phenanthroline(5,6-Me2-phen), 4,7-dimethyl-1,10-phenanthroline(4,7-Me2-phen), 4,7-diphenyl-1,10-phenanthroline(4,7-Ph2-phen), 2,2′-bipyrimidine(bpm), and pyrazino[2,3-f]quinoxaline or 1,4,5,8-tetraazaphenanthrene(tap). All complexes have the general formula [Pt(9S3)(N2)](PF6)2 (N2 = diimine ligand) and form similar structures in which the Pt(II) center is surrounded by a cis arrangement of the two N donors from the diimine chelate and two sulfur atoms from the 9S3 ligand. The third 9S3 sulfur in each structure forms a longer interaction with the platinum resulting in an elongated square pyramidal structure, and this distance is sensitive to the identity of the diimine ligand. In addition, we report the synthesis, structural, electrochemical, and spectroscopic properties of related Pd(II) 9S3 complex with tap. The 195Pt NMR chemical shifts for the six Pt(II) complexes show a value near −3290 ppm, consistent with a cis-PtS2N2 coordination sphere although more electron-withdrawing ligands such as tap show resonances shifted by almost 100 ppm downfield. The physicochemical properties of the complexes generally follow the electron-donating or withdrawing properties of the phenanthroline substituents.  相似文献   

20.
Palladium(II) complexes catalyze the formation of enamides via the formal cross-coupling reaction between nitrogen nucleophiles and vinyl ethers. These vinyl transfer reactions proceed in good yields with amide, carbamate, and sulfonamide nucleophiles, and the optimal catalyst is (DPP)Pd(OCOCF(3))(2) (DPP = 4,7-diphenyl-1,10-phenanthroline). [reaction: see text]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号