首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single‐molecule fluorescence microscopy is a powerful tool for revealing chemical dynamics and molecular association mechanisms, but has been limited to low concentrations of fluorescent species and is only suitable for studying high affinity reactions. Here, we combine nanophotonic zero‐mode waveguides (ZMWs) with fluorescence resonance energy transfer (FRET) to resolve single‐molecule association dynamics at up to millimolar concentrations of fluorescent species. This approach extends the resolution of molecular dynamics to >100‐fold higher concentrations, enabling observations at concentrations relevant to biological and chemical processes, and thus making single‐molecule techniques applicable to a tremendous range of previously inaccessible molecular targets. We deploy this approach to show that the binding of cGMP to pacemaking ion channels is weakened by a slower internal conformational change.  相似文献   

2.
We report measurements of fluorescence resonance energy transfer (FRET) for glucose sensing in an established concanavalin A–dextran affinity system using frequency‐domain lifetime spectroscopy. A dextran (MW 2000000) labeled with a small fluorescent donor molecule, Alexa Fluor 568, was used to competitively bind to a sugar‐binding protein, concanavalin A, labeled with acceptor molecule, Alexa Fluor 647, in the presence of glucose. The FRET‐quenching kinetics of the donor were analyzed from frequency‐domain measurements as a function of both glucose and acceptor‐protein concentrations using a Förster‐type decay kinetics model. The results show that the frequency‐domain measurements and donor decay kinetics can quantitatively indicate changes in the competitive binding of 0.09 μM dextran to labeled concanavalin A at a solution concentration of 10.67 μM in the presence of glucose at concentrations ranging from 0 to 224 mg/dL.  相似文献   

3.
Single‐molecule fluorescence resonance energy transfer (sm‐FRET) has become a widely used tool to reveal dynamic processes and molecule mechanisms hidden under ensemble measurements. However, the upper limit of fluorescent species used in sm‐FRET is still orders of magnitude lower than the association affinity of many biological processes under physiological conditions. Herein, we introduce single‐molecule photoactivation FRET (sm‐PAFRET), a general approach to break the concentration barrier by using photoactivatable fluorophores as donors. We demonstrate sm‐PAFRET by capturing transient FRET states and revealing new reaction pathways during translation using μm fluorophore labeled species, which is 2–3 orders of magnitude higher than commonly used in sm‐FRET measurements. sm‐PAFRET serves as an easy‐to‐implement tool to lift the concentration barrier and discover new molecular dynamic processes and mechanisms under physiological concentrations.  相似文献   

4.
We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)‐sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET‐conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)‐enhanced emission of 3 and 4 in lysosomes. It was further shown using two‐color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino‐functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells.  相似文献   

5.
We report a feasibility study for the application of our newly developed highly efficient and robust fluorescence‐resonance‐energy‐transfer (FRET) system to DNA. A 2′‐oligodeoxynucleotide, 12 , equipped with a quinolinone derivative as donor and a (bathophenanthroline)ruthenium(II) complex as acceptor and having a single uridine as potential cleavage site under basic conditions revealed an intensive FRET, which almost vanished after cleavage of the oligonucleotide under basic conditions (Fig. 7). Furthermore, in the arrangement of a molecular beacon (MB) DNA (see 13 ), a significant decrease of the FRET was observed after hybridization to a target sequence (Fig. 9). Due to the long decay times of the fluorescence of the Ru‐complex, the system allows for highly sensitive time‐gated measurements.  相似文献   

6.
We report on the directional F?rster resonance energy transfer (FRET) process taking place in single molecules of a first (T1P4) and a second (T2P8) generation of a perylenemonoimide (P)-terrylenediimide (T)-based dendrimer in which the chromophores are separated by rigid polyphenylene arms. At low excitation powers, single-molecule detection and spectroscopy of T1P4 and T2P8 dendrimers point to a highly efficient directional FRET from P donors to the central T acceptor, optical excitation at 488 nm resulting in exclusively acceptor emission in the beginning of the detected fluorescence intensity. Donor emission is seen only upon the bleaching of the acceptor. High-resolution time-resolved single-molecule fluorescence data measured with a microchannel plate photomultiplier reveal, for T2P8, a broad range of FRET rates as a result of a broad range of distances and orientations experienced by the donor-acceptor dendrimers when immobilized in a polymer matrix. Single-molecule data from T2P8 on 488 nm excitation are indicative for the presence, after terrylenediimide bleaching, of a P-P excited dimer characterized by a broad emission spectrum peaking around 600 nm and by fluctuating fluorescence decay times. At high excitation powers, single T1P4 and T2P8 molecules display simultaneous emission from both donor and acceptor chromophores. The effect, called "exciton blockade", occurs due to the presence of multiple excitations in a single molecule.  相似文献   

7.
We synthesized anionic hydrogels containing fluorophores and investigated the adsorption of a cationic quencher having an amino group into hydrogels by fluorescence resonance energy transfer (FRET). FRET from the fluorophore to the quencher in hydrogels was examined by fluorescence intensity and fluorescence decay using a fluorescence spectrophotometer and femtosecond laser spectroscopy. The fluorescence intensity of the fluorophore‐containing hydrogels decreased rapidly with increasing amounts of adsorbed cationic quencher. The fluorescence emission of the fluorophore in the quencher‐adsorbed hydrogels containing fluorophores decayed more rapidly than that of the original hydrogels. The aforementioned result indicates that the fluorescence of the fluorophore‐containing hydrogels is quenched due to FRET from the fluorophore to the quencher as the cationic quenchers can approach the fluorophores in hydrogels by electrostatic interactions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3245–3252, 2006  相似文献   

8.
Redox reactions are central to energy conversion and life metabolism. Herein we present electrochemical measurements with fluorescent readout of the redox‐sensitive dye Methylene Blue (MB), at the single‐molecule (SM) level. To overcome the low fluorescence quantum yield of MB we enhanced fluorescence by using individual gold nanorods to achieve the required sensitivity. By measuring the same molecule at different electrochemical potentials we determined the mid‐point potential of each single molecule through its redox‐induced fluorescence blinking dynamics.  相似文献   

9.
We report the design, synthesis, and characterization of binary oligonucleotide probes for mRNA detection. The probes were designed to avoid common problems found in standard binary probes such as direct excitation of the acceptor fluorophore and overlap between the donor and acceptor emission spectra. Two different probes were constructed that contained an array of either two or three dyes and were characterized using steady-state fluorescence spectroscopy, time-resolved fluorescence spectroscopy, and fluorescence depolarization measurements. The three-dye binary probe (BP-3d) consists of a Fam fluorophore which acts as a donor, collecting light and transferring it as energy to Tamra, which subsequently transfers energy to Cy5 when the two probes are hybridized to mRNA. This design allows the use of 488 nm excitation, which avoids the direct excitation of Cy5 and at the same time provides a good fluorescence resonance energy transfer (FRET) efficiency. The two-dye binary probe system (BP-2d) was constructed with Alexa488 and Cy5 fluorophores. Although the overlap between the fluorescence of Alexa488 and the absorption of Cy5 is relatively low, FRET still occurs due to their close physical proximity when the probes are hybridized to mRNA. This framework also decreases the direct excitation of Cy5 and reduces the fluorescence overlap between the donor and the acceptor. Picosecond time-resolved spectroscopy showed a reduction in the fluorescence lifetime of donor fluorophores after the formation of the hybrid between the probes and target mRNA. Interestingly, BP-2d in the presence of mRNA shows a slow rise in the fluorescence decay of Cy5 due to a relatively slow FRET rate, which together with the reduction in the Alexa488 lifetime provides a way to improve the signal to background ratio using time-resolved fluorescence spectra (TRES). In addition, fluorescence depolarization measurements showed complete depolarization of the acceptor dyes (Cy5) for both BP-3d (due to sequential FRET steps) and BP-2d (due to the relatively low FRET rate) in the presence of the mRNA target.  相似文献   

10.
The synthesis and photophysics of two new aminopropenyl naphthalene diimide (SANDI) dyes are reported. A general and convenient method for the synthesis of the precursor mono‐, di‐, and tetrabrominated 1,4,5,8‐naphthalene tetracarboxylic dianhydrides is described. The two core‐substituted SANDIs exhibit many of the photophysical properties required for fluorescence labeling applications including high photostability and high fluorescence quantum yields (>0.5) in the visible region of the spectrum. The emission wavelength is sensitive to the number of substituents on the NDI core, and the fluorescence decay times are in the range of ~8–12 ns for both compounds in the solvents investigated. Preliminary fluorescence emission data from single molecules of the compounds embedded in poly(methyl methacrylate) films are also reported and show that single molecules have very low yields of photobleaching, particularly the di‐substituted system. Furthermore, only a small proportion (<10 %) of the single molecules studied display fluorescence intermittencies or “blinks” in their photon trajectory. The compounds appear to be excellent candidates for applications at the single molecule level, for example, as FRET labels.  相似文献   

11.
This paper investigates the properties of a simple DNA-based nanodevice capable of detecting single base mutations in unlabeled nucleic acid target sequences. Detection is achieved by a two-stage process combining first complementary-base hybridization of a target and then a conformational change as molecular recognition criteria. A probe molecule is constructed from a single DNA strand designed to adopt a partial cruciform structure with a pair of exposed (unhybridized) strands. Upon target binding, a switchable cruciform construct (similar to a Holliday junction) is formed which can adopt open and closed junction conformations. Switching between these forms occurs by junction folding in the presence of divalent ions. It has been shown from the steady-state fluorescence of judiciously labeled constructs that there are differences between the fluorescence resonance energy transfer (FRET) efficiencies of closed forms, dependent on the target sequence near the branch point, where the arms of the cruciform cross. This difference in FRET efficiency is attributed to structural variations between these folded junctions with their different branch point sequences arising from the single base mutations. This provides a robust means for the discrimination of single nucleotide mismatches in a specific region of the target. In this paper, these structural differences are analyzed by fitting observed time-resolved donor fluorescence decay data to a Gaussian distribution of donor-acceptor separations. This shows the closest mean separation (approximately 40 A) for the perfectly matched case, whereas larger separations (up to 50 A) are found for the single point mutations. These differences therefore indicate a structural basis for the observed FRET differences in the closed configuration which underpins the operation of these devices as biosensors capable of resolving single base mutations.  相似文献   

12.
Intramolecular distances in proteins and other biomolecules can be studied in living cells by means of fluorescence resonance energy transfer (FRET) in steady-state or pulsed-excitation experiments. The major uncertainty originates from the unknown orientation between the optical dipole moments of the fluorescent markers, especially when the molecule undergoes thermal fluctuations in physiological conditions. We introduce a statistical method based on the von Mises-Fisher distribution for the interpretation of fluorescence decay dynamics in donor-acceptor FRET pairs that allows us to retrieve both the orientation and the extent of directional fluctuations of the involved dipole moments. We verify the method by applying it to donor-acceptor pairs controllably attached to DNA helices and find that common assumptions such as complete rotational freedom or fully hindered rotation of the dipoles fail a physical interpretation of the fluorescence decay dynamics. This methodology is applicable in single-molecule and ensemble measurements of FRET to derive more accurate distance estimates from optical experiments, without the need for more complex and expensive NMR studies.  相似文献   

13.
We have studied a donor-acceptor fluorophore-labeled DNA switch where the acceptor is Alexa-647, a carbocyanine dye, in solution at the single molecule level to elucidate the fluorescence switching mechanism. The acceptor, which is in an initial high fluorescence trans state, undergoes a photoisomerization reaction resulting in two additional states during its sub-millisecond transit across the probe volume. These two states are assigned to a nonfluorescent triplet trans state that strongly quenches the donor emission and a singlet cis state that blocks the fluorescence resonance energy transfer (FRET) pathway and gives rise to donor-only fluorescence. The formation of these states is faster than the transit time, so that all three states are approximately equally populated under our experimental conditions. The acceptor dye can stick to the DNA in all these states, with the rate of unsticking determining the rate of isomerization into the other states. Measurement of the rate of change of the FRET signal therefore provides information about the fluorophore-DNA intramolecular dynamics. These results explain the large zero peak in the proximity ratio, often seen in single molecule FRET experiments, and suggest that photoinduced effects may be important in single molecule FRET experiments using carbocyanine dyes. They also suggest that for fast photoinduced switching the interactions of the acceptor dye with the DNA and other surfaces should be prevented.  相似文献   

14.
Intramolecular F?rster-type excitation energy transfer (FRET) processes in a series of first-generation polyphenylene dendrimers substituted with spatially well-separated peryleneimide chromophores and a terryleneimide energy-trapping chromophore at the rim were investigated by steady-state and time-resolved fluorescence spectroscopy. Energy-hopping processes among the peryleneimide chromophores are revealed by anisotropy decay times of 50--80 ps consistent with a FRET rate constant of k(hopp) = 4.6 ns(-1). If a terryleneimide chromophore is present at the rim of the dendrimer together with three peryleneimide chromophores, more than 95% of the energy harvested by the peryleneimide chromophores is transferred and trapped in the terryleneimide. The two decay times (tau(1) = 52 ps and tau(2) = 175 ps) found for the peryleneimide emission band are recovered as rise times at the terryleneimide emission band proving that the energy trapping of peryleneimide excitation energy by the terryleneimide acceptor occurs via two different, efficient pathways. Molecular- modeling-based structures tentatively indicate that the rotation of the terryleneimide acceptor group can lead to a much smaller distance to a single donor chromophore, which could explain the occurrence of two energy-trapping rate constants. All energy-transfer processes are quantitatively describable with F?rster energy transfer theory, and the influence of the dipole orientation factor in the F?rster equation is discussed.  相似文献   

15.
Controlling the emission of bright luminescent nanoparticles by a single molecular recognition event remains a challenge in the design of ultrasensitive probes for biomolecules. Herein, we developed 20‐nm light‐harvesting nanoantenna particles, built of a tailor‐made hydrophobic charged polymer poly(ethyl methacrylate‐co‐methacrylic acid), encapsulating circa 1000 strongly coupled and highly emissive rhodamine dyes with their bulky counterion. Being 87‐fold brighter than quantum dots QDots 605 in single‐particle microscopy (with 550‐nm excitation), these DNA‐functionalized nanoparticles exhibit over 50 % total FRET efficiency to a single hybridized FRET acceptor, a highly photostable dye (ATTO665), leading to circa 250‐fold signal amplification. The obtained FRET nanoprobes enable single‐molecule detection of short DNA and RNA sequences, encoding a cancer marker (survivin), and imaging single hybridization events by an epi‐fluorescence microscope with ultralow excitation irradiance close to that of ambient sunlight.  相似文献   

16.
Summary: A cyclodextrin‐peptide hybrid bearing coumarin and fluorescein on the peptide side chain has been designed and synthesized as a novel chemosensor molecule utilizing fluorescence resonance energy transfer (FRET). Inclusion of coumarin into β‐cyclodextrin protects this system against fluorescent quenching, so that FRET occurs though donor and acceptor moieties nearby. FRET is diminished upon the addition of various guest compounds, suggesting that this system is useful for detecting molecules in aqueous solution.

A cyclodextrin‐peptide hybrid bearing coumarin and fluorescein on the peptide side chain.  相似文献   


17.
A separation‐free single‐base extension (SBE) assay utilizing fluorescence resonance energy transfer (FRET) was developed for rapid and convenient interrogation of DNA methylation status at specific cytosine and guanine dinucleotide sites. In this assay, the SBE was performed in a tube using an allele‐specific oligonucleotide primer (i.e., extension primer) labeled with Cy3 as a FRET donor fluorophore at the 5′‐end, a nucleotide terminator (dideoxynucleotide triphosphate) labeled with Cy5 as a FRET acceptor, a PCR amplicon derived from bisulfite‐converted genomic DNA, and a DNA polymerase. A single base‐extended primer (i.e., SBE product) that was 5′‐Cy3‐ and 3′‐Cy5‐tagged was formed by incorporation of the Cy5‐labeled terminator into the 3′‐end of the extension primer, but only if the terminator added was complementary to the target nucleotide. The resulting SBE product brought the Cy3 donor and the Cy5 acceptor into close proximity. Illumination of the Cy3 donor resulted in successful FRET and excitation of the Cy5 acceptor, generating fluorescence emission from the acceptor. The capacity of the developed assay to discriminate as low as 10% methylation from a mixture of methylated and unmethylated DNA was demonstrated at multiple cytosine and guanine dinucleotide sites.  相似文献   

18.
19.
A new approach is presented for the application of single‐molecule imaging to membrane receptors through the use of vesicles derived from cells expressing fluorescently labeled receptors. During the isolation of vesicles, receptors remain embedded in the membrane of the resultant vesicles, thus allowing these vesicles to serve as nanocontainers for single‐molecule measurements. Cell‐derived vesicles maintain the structural integrity of transmembrane receptors by keeping them in their physiological membrane. It was demonstrated that receptors isolated in these vesicles can be studied with solution‐based fluorescence correlation spectroscopy (FCS) and can be isolated on a solid substrate for single‐molecule studies. This technique was applied to determine the stoichiometry of α3β4 nicotinic receptors. The method provides the capability to extend single‐molecule studies to previously inaccessible classes of receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号