首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
We report the design of an amphiphilic polyamine (polymer 1) based on poly(2-alkenyl azlactone) that strongly couples the formation of polyelectrolyte complexes at aqueous/liquid crystal (LC) interfaces to ordering transitions in the LC. We demonstrate that the addition of a strong anionic polyelectrolyte to aqueous solutions in contact with polymer 1-laden LC interfaces (prepared by Langmuir-Schaefer transfer of monolayers of polymer 1 onto micrometer-thick films of nematic LC) triggers ordering transitions in the LCs. We further demonstrate that changes in the ordering of the LCs (i) are driven by electrostatic interactions between the polyelectrolytes, (ii) involve multivalent interactions between the polyelectrolytes, and (iii) are triggered by reorganization of the hydrophobic side chains of amphiphilic polymer 1 upon formation of the interfacial complexes. The results presented in this paper lead us to conclude that ordering transitions in LCs can be used to provide insights into the structure and dynamics of interfacial complexes formed between polyelectrolytes.  相似文献   

2.
This feature article describes recent advances in several areas of research involving the interfacial ordering of liquid crystals (LCs). The first advance revolves around the ordering of LCs at bio/chemically functionalized surfaces. Whereas the majority of past studies of surface-induced ordering of LCs have involved surfaces of solids that present a limited diversity of chemical functional groups (surfaces at which van der Waals forces dominate surface-induced ordering), recent studies have moved to investigate the ordering of LCs on chemically complex surfaces. For example, surfaces decorated with biomolecules (e.g., oligopeptides and proteins) and transition-metal ions have been investigated, leading to an understanding of the roles that metal-ligand coordination interactions, electrical double layers, acid-base interactions, and hydrogen bonding can play in the interfacial ordering of LCs. The opportunity to create chemically responsive LCs capable of undergoing ordering transitions in the presence of targeted molecular events (e.g., ligand exchange around a metal center) has emerged from these fundamental studies. A second advance has focused on investigations of the ordering of LCs at interfaces with immiscible isotropic fluids, particularly water. In contrast to prior studies of surface-induced ordering of LCs on solid surfaces, LC-aqueous interfaces are deformable and molecules at these interfaces exhibit high levels of mobility and thus can reorganize in response to changes in the interfacial environment. A range of fundamental investigations involving these LC-aqueous interfaces have revealed that (i) the spatial and temporal characteristics of assemblies formed from biomolecular interactions can be reported by surface-driven ordering transitions in the LCs, (ii) the interfacial phase behavior of molecules and colloids can be coupled to (and manipulated via) the ordering (and nematic elasticity) of LCs, and (iii) the confinement of LCs leads to unanticipated size-dependent ordering (particularly in the context of LC emulsion droplets). The third and final advance addressed in this article involves interactions between colloids mediated by LCs. Recent experiments involving microparticles deposited at the LC-aqueous interface have revealed that LC-mediated interactions can drive interfacial assemblies of particles through reversible ordering transitions (e.g., from 1D chains to 2D arrays with local hexagonal symmetry). In addition, recent single-nanoparticle measurements suggest that the ordering of LCs about nanoparticles differs substantially from micrometer-sized particles and that the interactions between nanoparticles mediated by the LCs are far weaker than predicted by theory (sufficiently weak that the interactions are reversible and thus enable self-assembly). Finally, LC-mediated interactions between colloidal particles have also been shown to lead to the formation of colloid-in-LC gels that possess mechanical properties relevant to the design of materials that interface with living biological systems. Overall, these three topics serve to illustrate the broad opportunities that exist to do fundamental interfacial science and discovery-oriented research involving LCs.  相似文献   

3.
Here, we report a simple and label-free methodology for real-time monitoring of adsorption of proteins such as bovine serum albumin (BSA), concanavalin A (ConA) (a lectin) and cathepsin D (CathD) (a tumour marker) on micrometer-sized poly (L-lysine) (PLL) functionalised liquid crystal (LC) droplets dispersed in aqueous phases. Earlier, we had demonstrated that PLL, a positively charged natural peptide, can induce homeotropic ordering of LCs at LC-aqueous interface, and thus PLL-adsorbed LC droplets showed radial director configuration. Herein, it was observed that subsequent non-specific adsorption of anionic proteins such as BSA, ConA and CathD can trigger a quick transition in director configuration of PLL-LC droplets (primarily dominated by electrostatic interactions) to pre-radial or bipolar, thus acting as a simple optical probe for detection of these proteins up to μg/mL of concentrations. Further, the detection limits for these proteins are found to vary (BSA<ConA<CathD) which follow the similar order as their anionic charges, thus suggesting the role of different binding affinities of protein-PLL in realising the director configuration of LC droplets. Overall, this study offers new pathways utilising ordering transition in LC droplets which will strengthen the principles to recognise biomolecular interactions for various interfacial and sensing applications.  相似文献   

4.
We report that specific binding of ligand-functionalized (biotinylated) phospholipid vesicles (diameter = 120 ± 19 nm) to a monolayer of proteins (streptavidin or anti-biotin antibody) adsorbed at an interface between an aqueous phase and an immiscible film of a thermotropic liquid crystal (LC) [nematic 4'-pentyl-4-cyanobiphenyl (5CB)] triggers a continuous orientational ordering transition (continuous change in the tilt) in the LC. Results presented in this paper indicate that, following the capture of the vesicles at the LC interface via the specific binding interaction, phospholipids are transferred from the vesicles onto the LC interface to form a monolayer, reorganizing and partially displacing proteins from the LC interface. The dynamics of this process are accelerated substantially by the specific binding event relative to a protein-decorated interface of a LC that does not bind the ligands presented by the vesicles. The observation of the continuous change in the ordering of the LC, when combined with other results presented in this paper, is significant, as it is consistent with the presence of suboptical domains of proteins and phospholipids on the LC interface. An additional significant hypothesis that emerges from the work reported in this paper is that the ordering transition of the LC is strongly influenced by the bound state of the protein adsorbed on the LC interface, as evidenced by the influence on the LC of (i) "crowding" of the protein within a monolayer formed at the LC interface and (ii) aging of the proteins on the LC interface. Overall, these results demonstrate that ordering transitions in LCs can be used to provide fundamental insights into the competitive adsorption of proteins and lipids at oil-water interfaces and that LC ordering transitions have the potential to be useful for reporting specific binding events involving vesicles and proteins.  相似文献   

5.
Side‐chain liquid‐crystalline‐b‐amorphous copolymers combine the thermotropic ordering of liquid crystals (LCs) with the physics of block copolymer phase segregation. In our earlier experiments, we observed that block copolymer order–order and order–disorder transitions could be induced by LC transitions. Here we report the development of a free‐energy model to understand the interplay between LC ordering and block copolymer morphology in an incompressible melt. The model considers the interaction between LC moieties, the stretching of amorphous chains from curved interfaces, interfacial surface contributions, and elastic deformation of the nematic phase. The LC block is modeled with Wang and Warner's theory, in which nematogens interact through mean‐field potentials, and the LC backbone is modeled as a wormlike chain. Free energy is estimated for various morphologies: homogeneous, lamellar, cylinder micelle, and spherical micelle. Phase diagrams were constructed by iteration over temperature and composition ranges. The resulting composition diagrams are highly asymmetric, and a variety of first‐order transitions are predicted to occur at the LC clearing temperature. Qualitatively, nematic deformation energies destabilize curved morphologies, especially when the LC block is in the center of the block copolymer micelle. The thermodynamics of diblocks with laterally attached, side‐on mesogens are also explored. Discussion focuses on how well the model captures experimental phenomena and how the predicted phase boundaries are affected by changes in polymer architecture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2671–2691, 2001  相似文献   

6.
We report that phospholipid vesicles incorporating ligands, when captured from solution onto surfaces presenting receptors for these ligands, can trigger surface-induced orientational ordering transitions in nematic phases of 4'-pentyl-4-cyanobiphenyl (5CB). Specifically, whereas avidin-functionalized surfaces incubated against vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were observed to cause the liquid crystal (LC) to adopt a parallel orientation at the surface, the same surfaces incubated against biotinylated vesicles (DOPC and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (biotin-DOPE)) caused the homeotropic (perpendicular) ordering of the LC. The use of a combination of atomic force microscopy (AFM), ellipsometry and quantitative fluorimetry, performed as a function of vesicle composition and vesicle concentration in solution, revealed the capture of intact vesicles containing 1% biotin-DOPE from buffer at the avidin-functionalized surfaces. Subsequent exposure to water prior to contact with the LC, however, resulted in the rupture of the majority of vesicles into interfacial multilayer assemblies with a maximum phospholipid loading set by random close packing of the intact vesicles initially captured on the surface (5.1 ± 0.2 phospholipid molecules/nm(2)). At high concentrations of biotinylated lipid (>10% biotin-DOPE) in the vesicles, the limiting lipid loading was measured to be 4.0 ± 0.3 phospholipid molecules/nm(2), consistent with the maximum phospholipid loading set by the spontaneous formation of a bilayer during incubation with the biotinylated vesicles. We measured the homeotropic ordering of the LC on the surfaces independently of the initial morphology of the phospholipid assembly captured on the surface (intact vesicle, planar multilayer). We interpret this result to infer the reorganization of the phospholipid bilayers either prior to or upon contact with the LCs such that interactions of the acyl chains of the phospholipid and the LC dominate the ordering of the LC, a conclusion that is further supported by quantitative measurements of the orientation of the LC as a function of the phospholipid surface density (>1.8 molecules/nm(2) is required to cause the homeotropic ordering of the LC). These results and others presented herein provide fundamental insights into the interactions of phospholipid-decorated interfaces with LCs and thereby provide guidance for the design of surfaces on which phospholipid assemblies captured through ligand-receptor recognition can be reported via ordering transitions in LCs.  相似文献   

7.
This work demonstrates a noninvasive approach to control alignment of liquid crystals persistently and reversibly at fluid interfaces by using a photoresponsive azobenzene‐based surfactant dissolved in an ionic liquid (IL), ethylammonium nitrate (EAN). As the first report on the orientational behavior of LCs at the IL/LC interface, our study also expands current understanding of alignment control of LCs at the aqueous/LC interface by adding electrolytes into aqueous solutions. The threshold concentration for switching the optical responses of LCs can be changed just by simply manipulating the ratio of EAN to H2O. This work will inspire fundamental studies and novel applications of using the LC‐based imaging technique to investigate various chemical and biological events in ILs.  相似文献   

8.
We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that: (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous–LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir–Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4′-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4′-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous–5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous–5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous–air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films of a novel flexible polymer. A second important outcome is the observation that the existence, extent, and dynamics of this order can be identified and characterized optically by transfer of the Langmuir film to a thin film of LC. Additional characterization of Langmuir films of two other flexible polymers [poly(methyl methacrylate) and poly(vinyl stearate)] using this method also resulted in uniform azimuthal alignment of 5CB, suggesting that the generation of long-range order in uniaxially compressed Langmuir films of polymers may also occur more generally over a broader range of polymers with flexible backbones.  相似文献   

9.
ABSTRACT

This article summarises recent advances made in our laboratory towards the development of new technological applications, such as biosensors and organic light-emitting diodes (OLEDs) based on liquid crystals (LCs) other than LC displays. The study of biomolecular interaction using LC material relies on the specific interaction between the LC and the biomolecule of interest at interfaces that permit the biomolecular events to be amplified into easily measured signals for various sensing applications. In the first part, we emphases recent studies in the design and modulation of LC-based interfaces based on robust colloidal LC gels for biological amplification, qualitative and quantitative understanding of important biomolecular interactions at LC–aqueous interfaces for diagnostic and laboratory applications and design of LC droplets that hold promise to act as a marker for cells and cell-based interactions. In the second part, we described design of organic materials for application in OLEDs on various discotic monomers, dimers and oligomers. These molecules have the ability to transport charges, holes and electrons. In addition, because of the high conductivity and ππ stacking, they are considered as the advanced materials for practical applications. The technological advances in our laboratory using discotic LCs will be briefly presented in this article.  相似文献   

10.
Liquid‐crystal (LC) droplet patterns are formed on a glass slide by evaporating a solution of nematic LC dissolved in heptane. In the presence of an anionic phospholipid, 1,2‐dioleoyl‐sn‐glycero‐3‐phospho‐rac‐(1‐glycerol) (DOPG), the LCs display a dark cross pattern, indicating a homeotropic orientation. When LC patterns are incubated with an aqueous mixture of DOPG and poly‐L ‐lysine (PLL), there is a transition in the LC pattern from a dark cross to a bright fan shape due to the electrostatic interaction between DOPG and PLL. Known to catalyze the hydrolysis of PLL into oligopeptide fragments, trypsin is preincubated with PLL, significantly decreasing the interactions between PLL and DOPG. LCs adopt a perpendicular orientation at the water–LC droplet interface, which gives rise to a dark cross pattern. This optical response of LC droplets is the basis for a quick and sensitive biosensor for trypsin.  相似文献   

11.
We report that specific anions (of sodium salts) added to aqueous phases at molar concentrations can trigger rapid, orientational ordering transitions in water-immiscible, thermotropic liquid crystals (LCs; e.g., nematic phase of 4'-pentyl-4-cyanobiphenyl, 5CB) contacting the aqueous phases. Anions classified as chaotropic, specifically iodide, perchlorate, and thiocyanate, cause 5CB to undergo continuous, concentration-dependent transitions from planar to homeotropic (perpendicular) orientations at LC-aqueous interfaces within 20 s of addition of the anions. In contrast, anions classified as relatively more kosmotropic in nature (fluoride, sulfate, phosphate, acetate, chloride, nitrate, bromide, and chlorate) do not perturb the LC orientation from that observed without added salts (i.e., planar orientation). Surface pressure-area isotherms of Langmuir films of 5CB supported on aqueous salt solutions reveal ion-specific effects ranking in a manner similar to the LC ordering transitions. Specifically, chaotropic salts stabilized monolayers of 5CB to higher surface pressures and areal densities (12.6 mN/m at 27 ?(2)/molecule for NaClO(4)) and thus smaller molecular tilt angles (30° from the surface normal for NaClO(4)) than kosmotropic salts (5.0 mN/m at 38 ?(2)/molecule with a corresponding tilt angle of 53° for NaCl). These results and others reported herein suggest that anion-specific interactions with 5CB monolayers lead to bulk LC ordering transitions. Support for the proposition that these ion-specific interactions involve the nitrile group was obtained by using a second LC with nitrile groups (E7; ion-specific effects similar to 5CB were observed) and a third LC with fluorine-substituted aromatic groups (TL205; weak dipole and no ion-specific effects were measured). Finally, we also establish that anion-induced orientational transitions in micrometer-thick LC films involve a change in the easy axis of the LC. Overall, these results provide new insights into ionic phenomena occurring at LC-aqueous interfaces, and reveal that the long-range ordering of LC oils can amplify ion-specific interactions at these interfaces into macroscopic ordering transitions.  相似文献   

12.
The temperature‐responsive poly (N, N‐diethylacrylamide) (pDEAAm) with narrower molecular weight distribution was prepared by the atom transfer radical polymerization and characterized by 1HNMR and gel permeation chromatography. The temperature‐responsive “tadpole‐shaped” BSA–pDEAAm hybrids were fabricated via a free Cys‐34 residue of bovine serum albumin (BSA) site specifically binding to the end group disulfide bonds of pDEAAm and characterized by native‐polyacrylamide gel electrophoresis (Native‐PAGE) and matrix‐assisted laser desorption/ionization time of flight mass spectrometry. Their temperature‐responsive behaviors were measured by ultraviolet‐visible spectra (UV‐Vis). The lower critical solution temperature (LCST) of the pDEAAm was identified as 28°C, and the LCST of BSA–pDEAAm hybrids was identified as 31°C. The morphologies of BSA–pDEAAm hybrids self‐assembled in the aqueous solutions with two different temperatures at 25 °C and 40°C were investigated by transmission electron microscopy. Below the LCST of BSA–pDEAAm hybrids, the separate spherical nanoparticles were observed. In contrast, bundles and clusters were observed above the LCST of BSA–pDEAAm hybrids. The results suggested that the self‐assembly morphology of BSA–pDEAAm hybrids depended upon the pDEAAm block in BSA–pDEAAm hybrids, and the morphology transitions were effected by the LCST of BSA–pDEAAm hybrids. It would be expected to be used in biomedicine and materials science. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.  相似文献   

14.
Determining creatinine levels in blood is of great importance in the detection of high risk for renal failure. Here, we report a simple methodology for real-time monitoring of creatinine employing surface-driven ordering transitions in liquid crystals (LCs) by changing pH in presence of creatinine deiminase enzyme. It is found that when 5CB (4-Cyano-4?-pentylbiphenyl) LC doped with 4?-hexyl-biphenyl-4-carboxylic acid, a bright optical appearance was observed (at aqueous–LC interface) which is not disturbed in presence of creatinine, consistent with a planar/tilted orientation of the LC molecules at those interface. Interestingly, in presence of creatinine deiminase, an ordering transition was observed resulting from enzymatic reactions (giving rise to NH4+ ions) that can change the local pH values and lead to dark optical appearance of the LC. Presence of different amounts of creatinine would lead varied ordering transition that can be monitored in real time in presence of creatinine deiminase. Our approach could detect the creatinine levels as low as that of the healthy adult (~50 µM) and can be successfully applied to measure higher concentration of creatinine in real time using dynamic optical response of the LC.  相似文献   

15.
Surface‐supported liquid crystals (LCs) that exhibit orientational and thus optical responses upon exposure to ppb concentrations of Cl2 gas are reported. Computations identified Mn cations as candidate surface binding sites that undergo redox‐triggered changes in the strength of binding to nitrogen‐based LCs upon exposure to Cl2 gas. Guided by these predictions, μm‐thick films of nitrile‐ or pyridine‐containing LCs were prepared on surfaces decorated with Mn2+ binding sites as perchlorate salts. Following exposure to Cl2, formation of Mn4+ (in the form of MnO2 microparticles) was confirmed and an accompanying change in the orientation and optical appearance of the supported LC films was measured. In unoptimized systems, the LC orientational transitions provided the sensitivity and response times needed for monitoring human exposure to Cl2 gas. The response was also selective to Cl2 over other oxidizing agents such as air or NO2 and other chemical targets such as organophosphonates.  相似文献   

16.
This paper describes the synthesis of mixed proteinaceous microspheres (MPMs) by the sonochemical method. The current fundamental research follows the research of Suslick and co‐workers who have developed a method by which high‐intensity ultrasound is used to make aqueous suspensions of proteinaceous microcapsules filled with water‐insoluble liquids. 1 By using high‐intensity ultrasound, we have synthesized microspheres made of a few different proteins. The three proteins used in the current experiments are bovine serum albumin (BSA), green fluorescent protein (GFP), and cyan fluorescent protein–glucose binding protein–yellow fluorescent fused protein (CFP‐GBP‐YFP). The two synthesized microspheres made of mixed proteins are BSA‐GFP and BSA‐(CFP‐GBP‐YFP). This paper presents the characterization of the sonochemically produced microspheres of mixed proteins. It also provides an estimate of the efficiency of the sonochemical process in converting the native proteins to microspheres.  相似文献   

17.
We report orientational anchoring transitions at aqueous interfaces of a water-immiscible, thermotropic liquid crystal (LC; nematic phase of 4'-pentyl-4-cyanobiphenyl (5CB)) that are induced by changes in pH and the addition of simple electrolytes (NaCl) to the aqueous phase. Whereas measurements of the zeta potential on the aqueous side of the interface of LC-in-water emulsions prepared with 5CB confirm pH-dependent formation of an electrical double layer extending into the aqueous phase, quantification of the orientational ordering of the LC leads to the proposition that an electrical double layer is also formed on the LC-side of the interface with an internal electric field that drives the LC anchoring transition. Further support for this conclusion is obtained from measurements of the dependence of LC ordering on pH and ionic strength, as well as a simple model based on the Poisson-Boltzmann equation from which we calculate the contribution of an electrical double layer to the orientational anchoring energy of the LC. Overall, the results presented herein provide new fundamental insights into ionic phenomena at LC-aqueous interfaces, and expand the range of solutes known to cause orientational anchoring transitions at LC-aqueous interfaces beyond previously examined amphiphilic adsorbates.  相似文献   

18.
The self‐assembly of inorganic nanoparticles into well‐ordered structures in the absence of solvents is generally hindered by van der Waals forces, leading to random aggregates between them. To address the problem, we functionalized rigid rare‐earth (RE) nanoparticles with a layer of flexible polymers by electrostatic complexation. Consequently, an ordered and solvent‐free liquid crystal (LC) state of RE nanoparticles was realized. The RE nanomaterials including nanospheres, nanorods, nanodiscs, microprisms, and nanowires all show a typical nematic LC phase with one‐dimensional orientational order, while their microstructures strongly depend on the particles’ shape and size. Interestingly, the solvent‐free thermotropic LCs possess an extremely wide temperature range from ?40 °C to 200 °C. The intrinsic ordering and fluidity endow anisotropic luminescence properties in the system of shearing‐aligned RE LCs, offering potential applications in anisotropic optical micro‐devices.  相似文献   

19.
A series of 4?-(4-alkyl-phenyl)-2?,6?-difluorotolane isothiocyanate liquid crystal (LC) compounds were synthesised, and their phase transitions and electrooptical properties were investigated. These compounds exhibit high birefringence, about 0.47–0.52. As the number of carbon atoms in the alkyl chains increases, these LC compounds can exhibit smectic phases. When these LCs were mixed into the commercial LCs, the birefringence values of LC mixtures become higher than pure commercial LCs, and the visco-elastic coefficients of five LC mixtures are very close to each other at every test temperature. The results of response properties indicate that the compounds with a tri-fluorine substitution and n-propyl end group possess better response performance than the others. These LC compounds are particularly attractive for achieving fast response times in LC optic devices.  相似文献   

20.
《中国化学快报》2022,33(8):3973-3976
Amphiphilic molecules adsorbed at the interface could control the orientation of liquid crystals (LCs) while LCs in turn could influence the distributions of amphiphilic molecules. The studies on the interactions between liquid crystals and amphiphilic molecules at the interface are important for the development of molecular sensors. In this paper, we demonstrate that the development of smectic LC ordering from isotropic at the LC/water interface could induce local high-density distributions of amphiphilic phospholipids. Mixtures of liquid crystals and phospholipids in chloroform are first emulsified in water. By fluorescently labeling the phospholipids adsorbed at the interface, their distributions are visualized under fluorescent confocal microscope. Interestingly, local high-density distributions of phospholipids showing a high fluorescent intensity are observed on the surface of LC droplets. Investigations on the correlation between phospholipid density, surface tension and smectic LC ordering suggest that when domains of smectic LC layers nucleate and grow from isotropic at the LC/water interface as chloroform slowly evaporates at room temperature, phospholipids transition from liquid-expanded to liquid-condensed phases in response to the smectic ordering, which induces a higher surface tension at the interface. The results will provide an important insight into the interactions between liquid crystals and amphiphilic molecules at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号