首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Nanoparticles consisting of a derivative of the blue-emitting conjugated polymer polyfluorene doped with green-, yellow-, and red-emitting conjugated polymers were prepared by a reprecipitation method. The nanoparticles can be described as a system of densely packed chromophores that exhibit efficient energy transfer from the host to the dopant polymers. Fluorescence quenching analysis of the host polymer as a function of the dopant concentration indicates that one energy acceptor molecule can effectively quench 90% of the fluorescence of a nanoparticle consisting of 100-200 host conjugated polymer molecules. A nanoparticle energy transfer model was developed that successfully describes the quenching behavior of a small number of highly efficient energy acceptors per nanoparticle. The fluorescence brightness of the blended polymer nanoparticles was determined to be much higher than that of inorganic quantum dots and dye-loaded silica particles of similar dimensions. The combination of high fluorescence brightness and tunable fluorescence of these blended nanoparticles is promising for ultrasensitive fluorescence-based assays.  相似文献   

2.
We have developed a straightforward method for producing a stable, aqueous suspension of hydrophobic, fluorescent pi-conjugated polymer nanoparticles consisting primarily of individual conjugated polymer molecules. Features of the method are the facile preparation, purity, unique optical properties, and small size (approximately 5-10 nm) of the resulting nanoparticles. The results of TEM, scanning force microscopy, and near-field scanning optical microscopy of particles cast from the suspension indicate that the particles are single conjugated polymer molecules. The NSOM results yield estimates of the optical cross-sections of individual conjugated polymer molecules. The UV-vis absorption spectra of the nanoparticle suspensions indicate a reduction in conjugation length attributed to deformations of the polymer backbone. Fluorescence spectra of the aqueous nanoparticle suspensions indicate interactions between segments of the polymer chain and intramolecular energy transfer.  相似文献   

3.
Interactions between noble metal (Ag and Au) nanoparticles and conjugated polymers as well as their one- and two-photon emission have been investigated. Ag and Au nanoparticles exhibited extraordinary quenching effects on the fluorescence of cationic poly(fluorinephenylene). The quenching efficiency by 37-nm Ag nanoparticles is ~19 times more efficient than that by 13-nm Au nanoparticles, and 9-10 orders of magnitude more efficient than typical small molecule dye-quencher pairs. On the other hand, the cationic conjugated polymers induce the aggregate formation and plasmonic coupling of the metal nanoparticles, as evidenced by transmission electron microscopy images and appearance of a new longitudinal plasmon band in the near-infrared region. The two-photon emissions of Ag and Au nanoparticles were found to be significantly enhanced upon addition of conjugated polymers, by a factor of 51-times and 9-times compared to the isolated nanoparticles for Ag and Au, respectively. These studies could be further extended to the applications of two-photon imaging and sensing of the analytes that can induce formation of metal nanoparticle aggregates, which have many advantages over the conventional one-photon counterparts.  相似文献   

4.
The electron energy structures and electrical properties of poly(p–phenylene vinylene) (PPV) and PPV/Au nanocomposite films were investigated to identify an effect of Au metal nanoparticles on a conjugated polymer. The current density in PPV/Au nanocomposite films was enhanced from an increase in the electron affinity with increasing Au nanoparticle content. The roughness of surface morphology was also observed with incorporation of Au nanoparticles. Then, an enhanced applied field could be developed at the thinner region of the film and an increase in the surface area with a resulting increase of electron injection, leading to an extra enhancement of the current.  相似文献   

5.
Here, we report for the first time cell-permeable and biocompatible polymeric nanoparticles consisting of a polymer conjugated to a near-infrared (NIR) fluorescence (Cy5.5)-linked effector caspase-specific peptide. The close spatial proximity of the NIR fluorochromes in polymeric nanoparticles results in an autoquenched state, but polymer nanoparticles give rise to strong NIR fluorescence signal under apoptotic cells. Thus, the smart polymeric nanoparticle developed here is an attractive probe for real-time imaging of apoptosis in single cells.  相似文献   

6.
Photocatalysts capable of harvesting a broad range of the solar spectrum are essential for sustainable chemical transformations and environmental remediation. Herein, we have integrated NIR-absorbing upconversion nanoparticles (UCNP) with UV-Vis absorbing conjugated porous organic polymer (POP) through the in situ multicomponent C−C coupling to fabricate a UC−POP nanocomposite. The light-harvesting ability of UC−POP is further augmented by loading plasmonic gold nanoparticles (AuNP) into UC−POP. A three-times enhancement in the upconversion luminescence is observed upon the incorporation of AuNP in UC−POP, subsequently boosting the photocatalytic activity of UC−POP−Au. The spectroscopic and photoelectrochemical investigations infer the enhanced photocatalytic oxidation of thioethers, including mustard gas simulant by UC−POP−Au compared to POP and UC−POP due to the facile electron-hole pair generation, suppressed exciton recombination, and efficient charge carrier migration. Thus, the unique design strategy of combining plasmonic and upconversion nanoparticles with a conjugated porous organic polymer opens up new vistas towards artificial light harvesting.  相似文献   

7.
通过水热合成法制备了单分散碳微球, 并以此单分散碳微球为核, 利用其表面修饰的银纳米粒子作为种子, 进一步还原制备了以碳微球为核、以金为壳的金纳米壳(Nanoshell)球体. 通过透射电子显微镜和紫外可见吸收光谱对其形态以及光谱性质进行了表征. 研究结果表明, 采用该种方法制备出来的碳微球具有良好的单分散性, 表面修饰简便快捷, 利用碳微球为核制备的金纳米壳球体尺寸可控, 在近红外范围内有强吸收. 实验结果证明该方法是制备金纳米壳球体的一种有效新方法.  相似文献   

8.
Mono- and dialkylated polyethylenimines (PEI-1R and PEI-2R) were used for the facile synthesis of gold nanoplates with a preferential growth direction along the Au (111) plane. It was found that polymer hydrophobicity greatly influenced the nanoparticle morphology. PEI-1R in the acidic aqueous solution with a smaller degree of alkylation effectively adsorbed on the surface of gold nanoplates with the protonated ethylenimine groups rather than being aggregated in the bulk aqueous phase to form polymer aggregates as compared to the situation for PEI-2R. Loose alkylated PEI aggregates in acidic solution promote the formation of gold nanoplates by means of the anion-induced cation adsorption on certain crystallographic facets during the growth of gold particles. Without incorporating alkyl groups, however, the TEM image of the gold colloid solution with PEI showed only the formation of spherical gold nanoparticles by the same process. The morphology of gold nanoparticles was tuned not only by varying the degree of alkylation of PEI samples but also by the solvent type and pH value of the solution. By utilizing differently alkylated PEIs as reducing agents, this facile synthetic procedure can selectively result in the formation of gold nanoplates at room temperature without an extra inducing process.  相似文献   

9.
Highly fluorescent nanoparticles of the conjugated polymer poly(9,9-dioctylfluorene) (PFO) with distinct phases were prepared, and their photophysical properties were studied by steady state and time-resolved fluorescence spectroscopy. An aqueous suspension of PFO nanoparticles prepared by a reprecipitation method was observed to exhibit spectroscopic characteristics consistent with the glassy phase of the polymer. We demonstrate that controlled addition of organic solvent leads to partial transformation of the disordered polymer chains into the planarized conformation (beta-phase), with the fractions of each component phase dependent on the amount of solvent added. Fluorescence spectroscopy of the PFO nanoparticles containing beta-phase indicates efficient energy transfer from the glassy-phase regions of the nanoparticles to the beta-phase regions. Salient features of the nanoparticles containing beta-phase include narrow, red-shifted fluorescence and increased fluorescence quantum yield as compared to the glassy-phase nanoparticles. Fluorescence lifetime measurements indicate that the increased quantum yield of the beta-phase PFO originates from a decrease in the nonradiative decay rate, with little change in the radiative rate. This decrease is likely due to exciton trapping by the beta-phase, which leads to a reduction in the energy transfer efficiency to quencher species present within the nanoparticle.  相似文献   

10.
Considering the importance of conjugated polymer nanoparticles, major emphasis has been given for designing and understanding the energy transfer and charge transfer processes of organic‐inorganic hybrids for light harvesting applications. In the present study, we have designed an aqueous solution‐based light harvesting system using conjugated polymer nanoparticles (poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene], MEH‐PPV) and Au nanoparticles. The change in photo‐induced processes in the presence of metal nanoparticles are studied by steady‐state absorption, time‐resolved emission, time‐resolved fluorescence up‐conversion, ultrafast anisotropy and femtosecond transient absorption spectroscopy. Global and target analysis of transient absorption data validate the creation of a collective delocalized state in polymer nanoparticles, and the time scale for excitation energy funnelling from S1 state to low lying collective delocalized state (CLs) is 18 ps. Then, the electron transfer from the CLs state to Au NP occurs with a time constant of 150 ps. The 815 ps long lived charge transfer (CT) state signifies the charge transfer from the CLs state of polymer nanoparticles to Au NP. Such basic understanding of relaxation processes in hybrid systems is very important for designing inorganic‐organic hybrid light‐harvesting systems.  相似文献   

11.
A facile synthesis of highly stable, water‐dispersible metal‐nanoparticle‐decorated polymer nanocapsules (M@CB‐PNs: M=Pd, Au, and Pt) was achieved by a simple two‐step process employing a polymer nanocapsule (CB‐PN) made of cucurbit[6]uril (CB[6]) and metal salts. The CB‐PN serves as a versatile platform where various metal nanoparticles with a controlled size can be introduced on the surface and stabilized to prepare new water‐dispersible nanostructures useful for many applications. The Pd nanoparticles on CB‐PN exhibit high stability and dispersibility in water as well as excellent catalytic activity and recyclability in carbon–carbon and carbon–nitrogen bond‐forming reactions in aqueous medium suggesting potential applications as a green catalyst.  相似文献   

12.
How the efficiency of molecular quenching by Au nanoparticles depends on nanoparticle size is reported for (a) dynamic (collisional) quenching of four different fluorophores by three Au nanoparticles having similar protective layers but differing core diameters (1.1, 1.6, and 2.0 nm) and (b) static quenching in the electrostatic association between [Ru(bpy)3]2+ and five tiopronin-protected Au nanoparticles having core diameters from 1.3 to 3.9 nm. The quenching constants systematically increase with core size. In (a), the dynamic constants scale with the molar absorbance coefficients of the nanoparticles, showing the essentially of the absorbance/emission spectral overlap, and the associated nanoparticle core density of electronic states, in energy-transfer quenching. In (b), the fluorescence of the Au nanoparticle itself was enhanced by energy transfer from the [Ru(bpy)3]2+ fluorophore.  相似文献   

13.
A facile synthesis of highly stable, water‐dispersible metal‐nanoparticle‐decorated polymer nanocapsules (M@CB‐PNs: M=Pd, Au, and Pt) was achieved by a simple two‐step process employing a polymer nanocapsule (CB‐PN) made of cucurbit[6]uril (CB[6]) and metal salts. The CB‐PN serves as a versatile platform where various metal nanoparticles with a controlled size can be introduced on the surface and stabilized to prepare new water‐dispersible nanostructures useful for many applications. The Pd nanoparticles on CB‐PN exhibit high stability and dispersibility in water as well as excellent catalytic activity and recyclability in carbon–carbon and carbon–nitrogen bond‐forming reactions in aqueous medium suggesting potential applications as a green catalyst.  相似文献   

14.
利用纳米颗粒对目标DNA的富集、分离作用以及阳离子荧光共轭聚合物良好的荧光特性,建立了一种特异性检测DNA的新方法.首先将标记有猝灭基团的DNA捕获探针修饰到纳米颗粒上,捕获互补的DNA分子;然后加入S1核酸酶,除去未捕获到互补DNA的捕获探针;最后用Dnase Ⅰ将颗粒上的双链切断,使猝灭基团从纳米颗粒上解离下来,与阳离子荧光共轭聚合物结合并猝灭其荧光.结果表明,目标核酸的浓度与该聚合物的荧光猝灭程度正相关,且具有良好的特异性,线性响应范围为5.0~40 nmol/L; 检出限为3.7 nmol/L(S/N=3).  相似文献   

15.
Au‐Fe3O4 nanoparticles were widely used as nanoplatforms for biologic applications through readily further functionalization. Dopamine (DA)‐coated superparamagnetic iron oxide (SPIO) nanoparticles (DA@Fe3O4) have been successfully synthesized using a one‐step process by modified coprecipitation method. Then 2–3 nm gold nanoparticles were easily conjugated to DA@Fe3O4 nanoparticles by the electrostatic force between gold nanoparticles and amino groups of dopamine to afford water‐soluble Au‐Fe3O4 hybrid nanoparticles. A detailed investigation by dynamic light scatting (DLS), transmission electron microscopy (TEM), fourier transform infrared (FT‐IR) and X‐ray diffraction (XRD) were performed in order to characterize the physicochemical properties of the hybrid nanoparticles. The hybrid nanoparticles were easily functionalized with a targeted small peptide A54 (AGKGTPSLETTP) and fluorescence probe fluorescein isothiocyanate (FITC) for liver cancer cell BEL‐7402 imaging. This simple approach to prepare hybrid nanoparticles provides a facile nanoplatform for muti‐functional derivations and may be extended to the immobilization of other metals or bimolecular on SPIO surface.  相似文献   

16.
Semiconducting polymer dots (Pdots) represent a new class of ultrabright fluorescent probes for biological imaging. They exhibit several important characteristics for experimentally demanding in vitro and in vivo fluorescence studies, such as their high brightness, fast emission rate, excellent photostability, nonblinking, and nontoxic feature. However, controlling the surface chemistry and bioconjugation of Pdots has been a challenging problem that prevented their widespread applications in biological studies. Here, we report a facile yet powerful conjugation method that overcomes this challenge. Our strategy for Pdot functionalization is based on entrapping heterogeneous polymer chains into a single dot, driven by hydrophobic interactions during nanoparticle formation. A small amount of amphiphilic polymer bearing functional groups is co-condensed with the majority of semiconducting polymers to modify and functionalize the nanoparticle surface for subsequent covalent conjugation to biomolecules, such as streptavidin and immunoglobulin G (IgG). The Pdot bioconjugates can effectively and specifically label cellular targets, such as cell surface marker in human breast cancer cells, without any detectable nonspecific binding. Single-particle imaging, cellular imaging, and flow cytometry experiments indicate a much higher fluorescence brightness of Pdots compared to those of Alexa dye and quantum dot probes. The successful bioconjugation of these ultrabright nanoparticles presents a novel opportunity to apply versatile semiconducting polymers to various fluorescence measurements in modern biology and biomedicine.  相似文献   

17.
In this article, a systematic study of the design and development of surface-modification schemes for silica nanoparticles is presented. The nanoparticle surface design involves an optimum balance of the use of inert and active surface functional groups to achieve minimal nanoparticle aggregation and reduce nanoparticle nonspecific binding. Silica nanoparticles were prepared in a water-in-oil microemulsion and subsequently surface modified via cohydrolysis with tetraethyl orthosilicate (TEOS) and various organosilane reagents. Nanoparticles with different functional groups, including carboxylate, amine, amine/phosphonate, poly(ethylene glycol), octadecyl, and carboxylate/octadecyl groups, were produced. Aggregation studies using SEM, dynamic light scattering, and zeta potential analysis indicate that severe aggregation among amine-modified silica nanoparticles can be reduced by adding inert functional groups, such as methyl phosphonate, to the surface. To determine the effect of various surface-modification schemes on nanoparticle nonspecific binding, the interaction between functionalized silica nanoparticles and a DNA chip was also studied using confocal imaging/fluorescence microscopy. Dye-doped silica nanoparticles functionalized with octadecyl and carboxylate groups showed minimal nonspecific binding. Using these surface-modification schemes, fluorescent dye-doped silica nanoparticles can be more readily conjugated with biomolecules and used as highly fluorescent, sensitive, and reproducible labels in bioanalytical applications.  相似文献   

18.
The aggregation in conjugated polyelectrolytes (CPs) can be effectively reduced by the formation of CP/nanoparticle assemblies. The photophysical properties of various nanoassemblies were studied by means of UV-visible and fluorescence spectroscopy in solution and as thin films. The dissociation of the polymer chains is caused by favorable electrostatic interactions between the cationic substituents of the CPs and the anionic charges present on the surface of the nanoparticles. Such an efficient displacement of pi-stacking by competitive positive interactions constitutes the first example of positive aggregation modulation.  相似文献   

19.
A heterostructure formed by a conjugated polymer and semiconducting nanoparticles was produced. The conjugated polymer was synthesized by oxidative copolymerization of 3-thiopheneacetic acid and 3-hexylthiophene, thus obtaining an amphiphilic polythiophene that allows the formation of a stable polymer layer at the air-water interface. Different numbers of monolayers were deposited on solid substrates. CuS nanoparticles were grown directly in the polymeric matrix using the carboxylic groups as nucleation centers. The reactions were monitored by quartz crystal microbalance, Brewster angle, and fluorescence microscopy. The heterostructure showed increased conductivity as compared to the pristine polymer.  相似文献   

20.
Immobilizations of nanoparticles and biomolecules on biocompatible substrates such as titanium are two promising approaches to bringing new functionalities to Ti-based biomaterials. Herein, we used a variety of X-ray spectroscopic techniques to study and better understand metal-thiolate interactions in biofunctionalized metal nanoparticle systems supported on Ti substrates. Using a facile one-step procedure, a series of Au nanoparticle samples with varied biomolecule coatings ((2-mercatopropionyl)glycine (MPG) and bovine serum albumin (BSA)) and biomolecule concentrations are prepared. Ag and Pd systems are also studied to observe change with varying metal composition. The structure and properties of these biomolecule-coated nanoparticles are investigated with scanning electron microscopy (SEM) and element-specific X-ray techniques, including extended X-ray absorption fine structure (Au L(3)-edge), X-ray absorption near-edge structure (Au L(3), Ag L(3), Pd L(3), and S K-edge), and X-ray photoelectron spectroscopy (Au 4f, Ag 3d, Pd 3d, and S 2p core level). It was found that, by comparison of SEM and X-ray spectroscopy results, the coating of metal nanoparticles with varying model biomolecule systems can have a significant effect on both surface coverage and organization. This work offers a facile chemical method for bio- and nanofunctionalization of Ti substrates as well as provides a physical picture of the structure and bonding of biocoated metal nanoparticles, which may lead to useful applications in orthopedics and biomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号