首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes the measurement of the binding affinities of two bifunctional RNA aptamers to their respective ligands. The aptamers comprise either a theophylline or malachite green binding sequence fused to a streptavidin binding sequence. These bifunctional aptamers are shown to bind simultaneously to both the small ligand and to streptavidin whether in free solution or on gold surfaces. Binding isotherms for both interactions were measured by different physiochemical techniques: surface plasmon resonance, fluorescence spectroscopy and dynamic light scattering. Both qualitatively and quantitatively there is little difference in binding affinities between the bifunctional aptamers and their monofunctional components. The respective Kd values for streptavidin binding in the monofunctional aptamer and in the theophylline bifunctional aptamer were 12 nM and 65 nM, respectively whilst the Kd values for theophylline binding in the monofunctional aptamer and the streptavidin bifunctional aptamer were 300 nM and 120 nM. These results are consistent with treating each aptamer sequence as a module that can be combined with others without significant loss of function. This allows for the use of streptavidin based immobilization strategies without either the cost of biotinylated dNTPs or the variable yields associated with the chemical biotinylation of RNA.  相似文献   

2.
In order to develop a sensor for opium alkaloid codeine detection, DNA aptamers against codeine were generated by SELEX (systematic evolution of ligands by exponential enrichment) technique. An aptamer HL7-14, which is a 37-mer sequence with Kd values of 0.91 μM, was optimized by the truncation-mutation assay. The specificity investigation shows that HL7-14 exhibits high specificity to codeine over morphine, and almost cannot bind to other small molecule. With this new selected aptamer, a novel electrochemical label-free codeine aptamer biosensor based on Au-mesoporous silica nanoparticles (Au-MSN) as immobilized substrate has been proposed using [Fe(CN)6]3−/4− as electroactive redox probe. The linear range covered from 10 pM to 100 nM with correlation coefficient of 0.9979 and the detection limit was 3 pM. Our study demonstrates that the biosensor has good specificity, stability and well regeneration. It can be used to detect codeine.  相似文献   

3.
Katie A. Edwards 《Talanta》2007,71(1):365-372
RNA or DNA aptamers have received much attention in recent literature as therapeutic agents and chromatographic matrices, however, their use in analytical methodologies is relatively unexplored. We describe here investigations aiming to combine this promising technology with versatile liposomes in a competitive assay format. Thus, a phospholipid derivative of an unsymmetrical 1,3-disubstituted xanthine (1-carboxyethyl-3-methylxanthine-DPPE) was prepared for incorporation into the lipid bilayers of dye-encapsulating liposomes. Its synthesis and characterization using GC-MS, 1H NMR, and HPLC are described. Equilibrium filtration experiments using enzyme linked immunosorbent assays (ELISAs) were completed to assess the affinity for theophylline of an unmodified RNA aptamer and one that had been modified on the 3′ end with biotin. A dissociation constant (Kd) for theophylline with the unmodified RNA aptamer of 0.9 μM and biotinylated aptamer of 1.0 μM was determined which showed that this modification did not affect the aptamer's affinity using this technique. The observed Kd values correlated well to the previously reported value of 0.6 μM. Experiments were also carried out in a competitive manner with the prepared 1-carboxypropyl-3-methylxanthine intermediate, and the final 1-carboxypropyl-3-methylxanthine-DPPE conjugate once it had been incorporated into the bilayers of liposomes. The Kd value for 1-carboxypropyl-3-methylxanthine was approximately 2.7 μM. Finally, successful binding to theophylline-analog-tagged liposomes in a competitive assay format was shown versus liposomes prepared without the tag.  相似文献   

4.
The hydrogen peroxide-oxidation of o-phenylenediamine (OPD) catalyzed by horseradish peroxidase (HRP) at 37 °C in 50 mM phosphate buffer (pH 7.0) was studied by calorimetry. The apparent molar reaction enthalpy with respect to OPD and hydrogen peroxide were −447 ± 8 kJ mol−1 and −298 ± 9 kJ mol−1, respectively. Oxidation of OPD by H2O2 catalyzed by HRP (1.25 nM) at pH 7.0 and 37 °C follows a ping-pong mechanism. The maximum rate Vmax (0.91 ± 0.05 μM s−1), Michaelis constant for OPD Km,S (51 ± 3 μM), Michaelis constant for hydrogen peroxide Km,H2O2 (136 ± 8 μM), the catalytic constant kcat (364 ± 18 s−1) and the second-order rate constants k+1 = (2.7 ± 0.3) × 106 M−1 s−1 and k+5 = (7.1 ± 0.8) × 106 M−1 s−1 were obtained by the initial rate method.  相似文献   

5.
Specific heat capacities (Cp) of polycrystalline samples of BaCeO3 and BaZrO3 have been measured from about 1.6 K up to room temperature by means of adiabatic calorimetry. We provide corrected experimental data for the heat capacity of BaCeO3 in the range T < 10 K and, for the first time, contribute experimental data below 53 K for BaZrO3. Applying Debye's T3-law for T → 0 K, thermodynamic functions as molar entropy and enthalpy are derived by integration. We obtain Cp = 114.8 (±1.0) J mol−1 K−1, S° = 145.8 (±0.7) J mol−1 K−1 for BaCeO3 and Cp = 107.0 (±1.0) J mol−1 K−1, S° = 125.5 (±0.6) J mol−1 K−1 for BaZrO3 at 298.15 K. These results are in overall agreement with previously reported studies but slightly deviating, in both cases. Evaluations of Cp(T) yield Debye temperatures and identify deviations from the simple Debye-theory due to extra vibrational modes as well as anharmonicity. The anharmonicity turns out to be more pronounced at elevated temperatures for BaCeO3. The characteristic Debye temperatures determined at T = 0 K are Θ0 = 365 (±6) K for BaCeO3 and Θ0 = 402 (±9) K for BaZrO3.  相似文献   

6.
This paper reports on investigations into interferences with the measurements of nanomolar nitrate + nitrite and soluble reactive phosphate (SRP) in oceanic surface seawater using a segmented continuous flow autoanalyser (SCFA) interfaced with a liquid-waveguide capillary flow-cell (LWCC). The interferences of silicate and arsenate with the analysis of SRP, the effect of sample filtration on the measurement of nanomolar nitrate + nitrite and SRP concentrations, and the stability of samples during storage are described.The investigation into the effect of arsenate (concentrations up to 100 nM) on phosphate analysis (concentrations up to 50 nM) indicated that the arsenate interference scaled linearly with phosphate concentrations, resulting in an overestimation of SRP concentrations of 4.6 ± 1.4% for an assumed arsenate concentration of 20 nM. The effect of added Si(OH)4 was to increase SRP signals by up to 36 ± 19 nM (at 100 μM Si(OH)4). However, at silicate concentrations below 1.5 μM, which are typically observed in oligotrophic surface ocean waters, the effect of silicate on the phosphate analysis was much smaller (≤0.78 ± 0.15 nM change in SRP). Since arsenate and silicate interferences vary between analytical approaches used for nanomolar SRP analysis, it is important that the interferences are systematically assessed in any newly developed analytical system.Filtration of surface seawater samples resulted in a decrease in concentration of 1.7-2.7 nM (±0.5 nM) SRP, and a small decrease in nitrate concentrations which was within the precision of the method (±0.6 nM). A stability study indicated that storage of very low concentration nutrient samples in the dark at 4 °C for less than 24 h resulted in no statistically significant changes in nutrient concentrations. Freezing unfiltered surface seawater samples from an oligotrophic ocean region resulted in a small but significant increase in the SRP concentration from 12.0 ± 1.3 nM (n = 3) to 14.7 ± 0.6 nM (n = 3) (Student's t-test; p = 0.021). The corresponding change in nitrate concentration was not significant (Student's t-test; p > 0.05).  相似文献   

7.
Hydrated layered crystalline barium phenylarsonate, Ba(HO3AsC6H5)2·2H2O was used as host for intercalation of n-alkylmonoamine molecules CH3(CH2)n-NH2 (n = 1-4) in aqueous solution. The amount intercalated (nf) was followed batchwise at 298 ± 1 K and the variation of the original interlayer distance (d) for hydrated barium phenylarsonate (1245 ppm) was followed by X-ray powder diffraction. Linear correlations were obtained for both d and nf as a function of the number of carbon atoms in the aliphatic chain (nc): d = (2225 ± 32) + (111 ± 11)nc and nf = (2.28 ± 0.15) − (11.50 ± 0.03)nc. The exothermic enthalpies of intercalation increased with nc, which was derived from the monomolecular amine layer arrangements with the longitudinal axis inclined by 60° to the inorganic sheets. The intercalation was followed by titration with amine at the solid/liquid interface and gave the enthalpy/number of carbons correlation: ΔH = −(7.25 ± 0.40) − (1.67 ± 0.10)nc. The negative Gibbs free energies and positive entropic values reflect the favorable host/guest intercalation processes for this system.  相似文献   

8.
A large, covalent macrocycle that can be served as an artificial allosteric model was prepared in a reasonable yield (36%) through the template-directed synthesis. The macrocycle contains two topologically discrete subcavities, each of which consists of four amide NHs of pyridine-2,6-dicarboxamide units. The macrocycle strongly binds two molecules of N,N,N′,N′-tetramethylterephthalamide in positive cooperative manner by hydrogen-bonding interactions. The association constants were calculated to be K1 = 1480 ± 90 and K2 = 5580 ± 150 M−1 with the Hill coefficient (h) of 1.6 at 25 °C in CDCl3.  相似文献   

9.
A water-soluble ratiometric fluorescent probe ZID-1 has been developed on the basis of an internal charge transfer (ICT) mechanism. Upon complexation with Zn2+ under physiological conditions, ZID-1 exhibits a significant blue shift of 77 nm in the emission spectrum. The fluorescent behavior of ZID-1 suggests that the pyridyl group incorporated into the fluorophore coordinates the metal ion as the fourth ligand and affords an appropriate binding affinity (Kd = 17.1 nM) for the intracellular imaging of Zn2+.  相似文献   

10.
Low-temperature heat capacities of the compound Na(C4H7O5)·H2O(s) have been measured with an automated adiabatic calorimeter. A solid-solid phase transition and dehydration occur at 290-318 K and 367-373 K, respectively. The enthalpy and entropy of the solid-solid transition are ΔtransHm = (5.75 ± 0.01) kJ mol−1 and ΔtransSm = (18.47 ± 0.02) J K−1 mol−1. The enthalpy and entropy of the dehydration are ΔdHm = (15.35 ± 0.03) kJ mol−1 and ΔdSm = (41.35 ± 0.08) J K−1 mol−1. Experimental values of heat capacities for the solids (I and II) and the solid-liquid mixture (III) have been fitted to polynomial equations.  相似文献   

11.
Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced “nanobody” EGa1, the binding fragment of a heavy-chain-only antibody. EGa1 is an antagonist of the epidermal growth factor receptor (EGFR), which is overexpressed on the surface of tumor cells. Using a background electrolyte (BGE) of 50 mM sodium phosphate (pH 8.0) in combination with a polybrene-poly(vinylsulfonic acid) capillary coating, CE analysis of EGa1 showed the presence of at least three components. Affinity of the EGa1 components towards the extracellular domain of EGFR was assessed by adding different concentrations (0–12 nM) of the receptor to the BGE while measuring the effective electrophoretic mobility of the respective EGa1 components. Binding curves obtained by plotting electrophoretic mobility shifts as a function of receptor concentration, yielded dissociation constants (Kd) of 1.65, 1.67, and 1.75 nM for the three components, respectively; these values were comparable to the Kd of 2.1 nM obtained for the bulk EGa1 product using a cellular assay. CE with mass spectrometry (MS) detection using a BGE of 25 mM ammonium acetate (pH 8.0) revealed that the EGa1 sample comprised of significant amounts of deamidated, bisdeamidated and N-terminal pyroglutamic acid products. CE–MS using a BGE of 100 mM acetic acid (pH 2.8) in combination with a polybrene–dextran sulfate–polybrene capillary coating demonstrated the additional presence of minor products related to incomplete removal of the signal peptide from the produced nanobody. Combining the results obtained from affinity CE and CE–MS, it is concluded that the EGa1 nanobody product is heterogeneous, comprising highly-related proteins that exhibit very similar affinity towards EGFR.  相似文献   

12.
2-Thiophenecarboxaldhyde is chemically bonded to silica gel surface immobilized monoamine, ethylenediamine and diethylenetriamine by a simple Schiff’s base reaction to produce three new SP-extractors, phases (I-III). The selectivity properties of these phases toward Hg(II) uptake as well as eight other metal ions: Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) were extensively studied and evaluated as a function of pH of metal ion solution and equilibrium shaking time by the batch equilibrium technique. The data obtained clearly indicate that the new SP-extractors have the highest affinity for retention of Hg(II) ion. Their Hg(II) uptake in mmol g−1 and distribution coefficient as log Kd values are always higher than the uptake of any other metal ion along the range of pH used (pH 1.0-10.0). The uptake of Hg(II) using phase I was 2.0 mmol g−1 (log Kd 6.6) at pH 1.0 and 2.0. 1.8 mmol g−1 (log Kd 4.25), 1.6 mmol g−1 (log Kd 3.90) and 1.08 mmol g−1 (log Kd 3.37) at pH 3.0, 5.0 and 8.0, respectively. Selective separation of Hg(II) from the other eight coexisting metal ions under investigation was achieved successfully using phase I at pH 2.0 either under static or dynamic conditions. Hg(II) was completely retained while Ca(II), Co(II) and Cd(II) ions were not retained. Ni(II), Cu(II), Zn(II), Pb(II) and Fe(III) showed very low percentage retention values to be 0.74, 0.97, 3.5 and 6.3%, respectively. Moreover, the high recovery values (95.5 ± 0.5, 95.8 ± 0.5 and 99.0% ± 1.0) of percolating two liters of doubly distilled water, drinking tap water and Nile river water spiked with 5 ng/l of Hg(II) over 100 mg of phase I packed in a minicolumn and used as a thin layer enrichment bed demonstrate the accuracy and validity of the new SP-extractors for preconcentration of the ultratrace amount of spiked Hg(II) prior to the determination by borohydride generation atomic absorption spectrometry (AAS) with no matrix interference. The detection limit (3σ) for Hg(II) based on enrichment factor 1000 was 4.75 pg/ml. The precision (R.S.D.) obtained for different amounts of mercury was in the range 0.52-1.01% (N = 3) at the 25-100 ng/l level.  相似文献   

13.
Soliman EM  Saleh MB  Ahmed SA 《Talanta》2006,69(1):55-60
Dimethyl sulfoxide (DMSO) was simply immobilized to neutral alumina via quite strong hydrogen bonding between sulfoxide oxygen and surface alumina hydroxo groups. The produced alumina-modified dimethyl sulfoxide (AMDMSO) solid phase (SP)-extractor experienced high thermal and medium stability. Moreover, the small and compact size of DMSO moiety permit high surface coverage evaluated to be 2.1 ± 0.1 mmol g−1 of alumina. Hg(II) uptake was 1.90 mmol g−1(distribution coefficient log Kd = 5.658) at pH 1.0 or 2.0, 1.68 mmol g−1 (log Kd = 4.067) at pH 3.0 or 4.0 while the metal ions Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) showed low values 0.513-0.118 mmol g−1 (log Kd < 3.0) in the pH range 4.0-7.0. A mechanism was suggested to explain the unique uptake of Hg(II) ions by binding as neutral and chloroanionic species predominate at pH values ≤ 3.0 of a medium rich in chloride ions. A direct and fast batch separation mode was achieved successfully to retain selectively Hg(II) in presence of other eight coexisting metal ions. Thus, Hg(II) was completely retained; Ca(II), Co(II), Ni(II) and Cd(II) were not retained, while Pb(II), Cu(II), Zn(II) and Fe(III) exhibited very low percentage retention evaluated to be 0.42, 0.49, 1.4 and 5.43%, respectively. The utility of the new modified alumina sorbent for concentrating of ultratrace amounts of Hg(II) was performed by percolating 2 l of doubly distilled water, drinking tap water, and Nile river water spiked with 10 ng/l over 100 mg of the sorbent packed in a minicolumn used as a thin layer enrichment bed prior to the determination by CV-AAS. The high recovery values obtained (98.5 ± 0.5, 98.5 ± 0.5 and 103.0 ± 1.0) based on excellent enrichment factor 1000, along with a good precision (R.S.D.% 0.51-0.97%, N = 3) demonstrate the accuracy and validity of the new modified alumina sorbent for preconcentrating ultratrace amounts of Hg(II) with no matrix interference.  相似文献   

14.
The hydridic reactivity of the complex W(CO)(H)(NO)(PMe3)3 (1) was investigated applying a variety of protic donors. Formation of organyloxide complexes W(CO)(NO)(PMe3)3(OR) (R = C6H5 (2), 3,4,5-Me3C6H2 (3), CF3CH2 (4), C6H5CH2 (5), Me (6) and iPr (7)) and H2 evolution was observed. The reactions of 1 accelerated with increasing acidity of the protic donor: Me2CHOH (pKa = 17) < MeOH (pKa = 15.5) < C6H5CH2OH (pKa = 15) < CF3CH2OH (pKa = 12.4) < C6H2Me3OH (pKa = 10.6) < C6H5OH (pKa = 10).Regioselective hydrogen bonding of 1 was probed with two of the protic donors furnishing equilibrium formation of the dihydrogen bonded complexes ROH···HW(CO)(NO)(PMe3)3 (R = 3,4,5-Me3C6H2,3a and iPr, 7a) and the ONO hydrogen bonded species ROH···ONW(CO)(H)(PMe3)3 (R = C6H2Me3,3b and iPr, 7b) which were studied in hexane and d8-toluene solutions using variable temperature IR and NMR spectroscopy. Quantitative IR experiments at low temperatures using 3,4,5-trimethylphenol (TMP) confirmed the two types of competitive equilibria: dihydrogen bonding to give 3aH1 = −5.8 ± 0.4 kcal/mol and ΔS1 = −15.3 ± 1.4 e.u.) and hydrogen bonding to give 3b (ΔH2 = −2.8 ± 0.1 kcal/mol and ΔS2 = −5.8 ± 0.3 e.u.). Additional data for the hydrogen bonded complexes 3a,b and 7a,b were determined via NMR titrations in d8-toluene from the equilibrium constants Kδ) and KR1) measuring either changes in the chemical shifts of HW(Δδ) or the excess relaxation rates of HWR1) (3a,b: ΔHδ) = −0.8 ± 0.1 kcal/mol; ΔSδ) = −1.4 ± 0.3 e.u. and ΔHR1) = −5.8 ± 0.4 kcal/mol; ΔSR1) = −22.9 ± 1.9 e.u) (7a,b: ΔHδ) = −2.3 ± 0.2 kcal/mol; ΔSδ) = −11.7 ± 0.9 e.u. and ΔHR1) = −2.9 ± 0.2 kcal/mol; ΔSR1) = −14.6 ± 1.0 e.u). Dihydrogen bonding distances of 1.9 Å and 2.1 Å were derived for 3a and 7a from the NMR excess relaxation rate measurements of HW in d8-toluene. An X-ray diffraction study was carried out on compound 2.  相似文献   

15.
Nuclear energy development has raised new issues like radionuclides biogeochemistry. The modelling of their biochemical properties involves the accurate determination of thermodynamical data, like stability constants. This can be achieved by using hyphenated capillary electrophoresis (CE)–ICPMS and the method was applied successfully on 1:1 lanthanum–oxalate and uranyl–oxalate complexes. Several significant steps are discussed: choice of analytical conditions, electrophoretic mobility calculation, mathematical treatment of experimental data by using linear regressions, ligand concentration and ionic strength corrections. The following values were obtained with a good precision for lanthanum–oxalate and uranyl–oxalate complexes: log(K°(LaOxa+)) = 6.10 ± 0.10 and log(K°(UO2Oxa)) = 6.40 ± 0.30, respectively, at infinite dilution. These values are consistent with the literature data, showing CE–ICPMS potential for metal complexes stability constants determination.  相似文献   

16.
Heat capacity and enthalpy increments of ternary bismuth tantalum oxides Bi4Ta2O11, Bi7Ta3O18 and Bi3TaO7 were measured by the relaxation time method (2-280 K), DSC (265-353 K) and drop calorimetry (622-1322 K). Temperature dependencies of the molar heat capacity in the form Cpm=445.8+0.005451T−7.489×106/T2 J K−1 mol−1, Cpm=699.0+0.05276T−9.956×106/T2 J K−1 mol−1 and Cpm=251.6+0.06705T−3.237×106/T2 J K−1 mol−1 for Bi3TaO7, Bi4Ta2O11 and for Bi7Ta3O18, respectively, were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S°m(298.15 K)=449.6±2.3 J K−1 mol−1 for Bi4Ta2O11, S°m(298.15 K)=743.0±3.8 J K−1 mol−1 for Bi7Ta3O18 and S°m(298.15 K)=304.3±1.6 J K−1 mol−1 for Bi3TaO7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

17.
In this article, we present a systematic study on IgG and Fab fragment of anti-IgG molecules using fluorescence auto- and cross-correlation spectroscopy to investigate their diffusion characteristics, binding kinetics, and the effect of small organic molecule, urea on their binding. Through our analysis, we found that the diffusion coefficient for IgG and Fab fragment of anti-IgG molecules were 37 ± 2 μm2 s−1 and 56 ± 2 μm2 s−1, respectively. From the binding kinetics study, the respective forward (ka) and backward (kd) reaction rates were (5.25 ± 0.25) × 106 M−1 s−1 and 0.08 ± 0.005 s−1, respectively and the corresponding dissociation binding constant (KD) was 15 ± 2 nM. We also found that urea inhibits the binding of these molecules at 4 M concentration due to denaturation.  相似文献   

18.
Thermodynamics of chromium acetylacetonate sublimation   总被引:1,自引:0,他引:1  
The equilibrium sublimation pressure Cr(acac)3(s) = Cr(acac)3(g) was measured in the range 320 ≤ T (K) ≤ 476 by two procedures. One of them is Knudsen's effusion procedure with mass spectrometric analysis of the composition of the gas phase, which proved to be good in measuring low pressure. The second is mass spectrometric procedure “calibrated volume method” (CVM), which helped us to expand the possibilities of the effusion method toward high pressure range. Experimental data are in good agreement with each other.For this process were obtained ln(P (Pa)) = 39.197 − 15 308.5/T, enthalpy ΔsubH° (T) = 127.28 ± 0.22 kJ mol−1 and entropy ΔsubS° (T) = 230.1 ± 0.5 J mol−1 K−1.  相似文献   

19.
A straightforward method for both the quantitative and the equilibrium analysis of humic acids in solution, based on the combination of potentiometry with coulometry, is presented. The method is based on potentiometric titrations of alkaline solutions containing, besides the humic acid sample, also NaClO4 1 M; by means of constant current coulometry the analytical acidity in the solutions is increased with a high precision, until the formation of a solid phase occurs. Hence, the total acid content of the macromolecules may be determined from the e.m.f. data by using modified Gran plots or least-squares sum minimization programs as well. It is proposed to use the pKw value in the ionic medium as a check of the correctness of each experiment; this datum may be readily obtained as a side-result in each titration. Modelling acid-base equilibria of the HA samples analysed was also performed, on the basis of the buffer capacity variations occurring during each titration. The experimental data fit, having the least standard deviation, was obtained assuming a mixture of three monoprotic acids (HX, HY, HZ) having about the same analytical concentration, whose acid dissociation constants in NaClO4 1 M at 25 °C were pKHX = 3.9 ± 0.2, pKHY = 7.5 ± 0.3, pKHZ = 9.5 ± 0.2, respectively. With the proposed method the handling of alkaline HA solutions, the titration with very dilute NaOH or HCl solutions and the need for the availability of very small volumes of titrant to be added by microburettes may be avoided.  相似文献   

20.
Chemometric analysis of ultraviolet-visible (UV-vis) spectra for pH values 1.0, 3.3, 5.3, and 6.9 was used to investigate the kinetics and the structural transformations of anthocyanins in extracts of calyces of hibiscus flowers of the Hibiscus acetosella Welw. ex Finicius for the first time. Six different species were detected: the quinoidal base (A), the flavylium cation (AH+), the pseudobase or carbinol pseudobase (B), cis-chalcone (CC), trans-chalcone (Ct), and ionized cis-chalcone (CC). Four equilibrium constant values were calculated using relative concentrations, hydration, pKh = 2.60 ± 0.01, tautomeric, KT = 0.14 ± 0.01, acid-base, pKa = 4.24 ± 0.04, and ionization of the cis-chalcone, pKCC=8.74±1.5×10−2. The calculated protonation rate of the tautomers is KH+=0.08±7.6×10−3. These constants are in excellent agreement with those measured previously in salt form. From a kinetic viewpoint, the situation encountered is interesting since the reported investigation is limited to visible light absorption in acid medium. These models have not been reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号