首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conducting electroactive polymers (CPs) are materials discovered just over 20 years ago which have aroused considerable interest on account of their electronic conducting properties and unique chemical and biochemical properties. Consequently, they have numerous (bio)analytical and technological applications. CPs are easily synthesized and deposited onto the conductive surface of a given substrate from monomer solutions by electrochemical polymerization with precise electrochemical control of their formation rate and thickness. Coating electrodes with CPs under mild conditions opens up enormous possibilities for the immobilization of biomolecules and bioaffinity or biorecognizing reagents, the improvement of their electrocatalytic properties, rapid electron transfer and direct communication to produce a range of analytical signals and new analytical applications. Co-immobilization of other molecules (enzymatic co-factors or charge-transfer mediators) by entrapment within electropolymerized films or by covalent binding on these films permits straightforward fabrication of reagentless biosensors. The characteristics of CPs and their uses, mainly in amperometric biosensors, are reviewed. The most recent applications and lines of research related to CP films are summarized in the different sections of the paper, and probable future trends are discussed.  相似文献   

2.
Nanotechnology has become one of the most exciting frontier fields in analytical chemistry. The huge interest in nanomaterials, for example in chemical sensors and catalysis, is driven by their many desirable properties. Although metal is a poor catalyst in bulk form, nanometre-sized particles can exhibit excellent catalytic activity due to their relative high surface area-to-volume ratio and their interface-dominated properties, which significantly differ from those of the bulk material. The integration of metal nanoparticles into thin film of permselective membrane is particularly important for various applications, for example in biological sensing and in electrocatalysis. We have already established different techniques to design permselective membrane-coated chemically modified electrodes with incorporated redox molecules for electrocatalytic, electrochromic and sensor applications. Recently, we have prepared nanostructured platinum and copper (represented Mnano, M = Pt and Cu) modified GC/Nafion electrodes (GC/Nf/Mnano) and characterized by using AFM, XPS, XRD and electrochemical techniques. The nanostructured Mnano modified electrodes were utilized for efficient electrocatalytic selective oxidation of neurotransmitter molecules in the presence of interfering species such as ascorbic acid (AA) and uric acid (UA). It has been also shown that the modified electrodes could be used as sensors for the detection of submicromolar concentrations of biomolecules with practical applications to real samples such as blood plasma and dopamine hydrochloride injection solution. The GC/Cunano electrode has been used for catalytic reduction of oxygen.  相似文献   

3.
This review present a critical comparison of the electrochemical behavior and analytical performance of glassy carbon electrodes (GCE) modified with carbon nanotubes (CNTs) dispersed in different polymers: polyethylenimine (PEI), PEI functionalized with dopamine (PEI-Do), polyhistidine (Polyhis), polylysine (Polylys), glucose oxidase (GOx) and double stranded calf-thymus DNA (dsDNA). The comparison is focused on the analysis of the influence of the sonication time, solvent, polymer/CNT ratio, and nature of the polymer on the efficiency of the dispersions and on the electrochemical behavior of the resulting modified electrodes. The results allow to conclude that an adequate selection of the polymers makes possible not only an efficient dispersion of CNTs but also, and even more important, the building of successful analytical platforms for the detection of different bioanalytes like NADH, glucose, DNA and dopamine.  相似文献   

4.
Novel electrochemical sensors for epinephrine (EP) based on a glassy carbon electrode (GCE) modified with a redox polymer film and iron (III) oxide nanoparticles (Fe2O3NP) have been developed. Two redox polymers‐poly(brilliant cresyl blue) (PBCB) and poly(Nile blue) (PNB), and two different architectures‐polymer/Fe2O3/GCE and Fe2O3/polymer/GCE were investigated. The electrochemical oxidation of epinephrine at the modified electrodes was performed by differential pulse voltammetry (DPV), in pH 7 electrolyte, and the analytical parameters were determined. The results show enhanced performance, more sensitive responses and lower detection limits at the modified electrodes, compared to other electrochemical epinephrine sensors reported in the literature. The best voltammetric response with the lowest detection limit was obtained for the determination of epinephrine at PBCB/Fe2O3/GCE. The novel sensors are reusable, with good reproducibility and stability, and were successfully applied to the determination of epinephrine in commercial injectable adrenaline samples.  相似文献   

5.
This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.  相似文献   

6.
The ability to solubilize single-wall and multiwall carbon nanotubes (CNT) in the presence of the perfluorinated polymer Nafion is described. Such use of Nafion as a solubilizing agent for CNT overcomes a major obstacle for creating CNT-based biosensing devices. Their association with Nafion does not impair the electrocatalytic properties of CNT. The resulting CNT/Nafion modified glassy-carbon electrodes exhibit a strong and stable electrocatalytic response toward hydrogen peroxide. The marked acceleration of the hydrogen peroxide redox process is very attractive for the operation of oxidase-based amperometric biosensors, as illustrated for the highly selective low-potential (-0.05 V vs Ag/AgCl) biosensing of glucose. These findings open the door for using CNT in a wide range of chemical sensors and nanoscale electronic devices.  相似文献   

7.
Ultrathin crystalline CdSe nanosheets have been synthesized through a facile solution processes. Their application to simultaneous electrochemical determination of catechol and hydroquinone is demonstrated. The few-layer single crystalline CdSe modified electrode exhibits strong electrocatalytic activity toward the oxidation of a mixture of catechol and hydroquinone. The excellent analytical performance makes the ultrathin CdSe nanomaterials promising for the development of electrochemical sensors for potential applications in medicine, biotechnology and environmental chemistry.  相似文献   

8.
《Electroanalysis》2017,29(7):1660-1669
Over the past few decades, the (bio)functionalization of carbon nanomaterials (CNMs), such as nanohorns, carbon nanotubes, graphene, graphite and related with a wide range of (bio)modifiers have been extensively studied for their incorporation on different pure metal or carbon electrode surfaces via drop‐casting. However, CNMs are also shown to be important functional additives for polymers, having great potential to produce rigid nanocomposite materials with a range of enhanced properties, including mechanical, optical, electrical, thermal and electrochemical. The high malleability derived from the host polymer allows alternative strategies that can be carried out in order to incorporate different types of (bio)modifiers in/on/into a polymeric nanocomposite electrode. Accordingly, this mini review overviews the main methodologies used for the bio‐functionalization of electrochemical transducers based on nanocomposite carbon paste electrodes (NC‐CPEs). Additionally, the most extensively (bio)modifiers used in electrochemical (bio)sensing, together with their various electrocatalytical performance are also discussed, fact that might serve as a general outlook for planning further research.  相似文献   

9.
In this study, we prepared carbon nanotube (CNT)/Nafion-modified ITO electrodes and investigated their electrochemical behavior. The CNTs were dissolved in a solution of the ionic polymer Nafion and then CNT/Nafion composite films were deposited onto ITO electrodes through spin-coating of this homogeneous solution. We studied the effects of chemical pretreatment of the CNTs and the pH of the buffer on the electroanalytical behavior of the CNT/Nafion-modified ITO electrodes toward catecholamines. The modified electrodes enhanced the peak current and lowered the overpotentials. We observed high electrooxidative performance for the modified ITO electrodes: the oxidative currents of the catecholamines were up to 125-fold higher than those obtained using bare ITO electrodes.  相似文献   

10.
Nanotubes have extraordinary properties, which have attracted the attention of many researchers from diverse fields. The interaction between carbon nanotube (CNT) or boron nitride nanotube (BNNT) and polymer/copolymer/surfactant has shown potential improvement in properties and performance. This paper reviews the recent studies in this field obtained from molecular dynamics simulation calculations, focusing on the interaction energies between nanostructure and polymer, radial distribution function, diffusion and radius of gyration and some other physical chemistry properties. Recent studies show that the intermolecular interaction in mentioned systems is strongly influenced by the specific monomer structure of polymers. The high values of intermolecular interaction energy of such composites offer that an efficient load transfer exists at the interface between nanotube and polymer, which is of a key role in the composite reinforcement practical applications. Our study reviewed the possibility of wrapping CNT/BNNT/CNT bundles by polymers and also the effects of CNTs/CNT bundles’ length on the conformational behavior of polymer adsorbed on these nanostructures.  相似文献   

11.
This review (with 79 references) summarizes the recent work on the development of chemical sensors and biosensors based on the use of composites made from conducting polymers (CPs) and graphene. Owing to the unique electrical, mechanical, optical, chemical and structural properties of CP and graphene, these kinds of composites have generated increasing interest in senor field. In this review, we first discuss methods for preparation of CP/GE composites by chemical, electrochemical, or physical methods including electrostatic interactions. We then cover aspects of the fabrication of modified electrodes and the performance of respective sensors with electrochemical, electronic or optical signal transduction. We then discuss sensors for the determination of inorganic and organic species, gases and vapors. We also review the state of the art in respective biosensors for hydrogen peroxide and glucose, for oligomers (DNA, RNA, and aptamers), for biogenic amines, NAD^+/NADH, cytochromes and the like, and in immunosensors. Finally, the perspective and current challenges of CP/GE composites for use in (bio)sensors are outlooked.
Figure
Conducting polymer composites with graphene have attracted increasing research interest in the modified electrodes for the application in chemical sensors and biosensors, due to the unique intrinsic properties of each component.  相似文献   

12.
Sol-gel chemistry provides a route to preparing inorganic polymers with ionically conducting properties by room temperature synthetic routes. The products, which are rigid solids, are well-suited as media for conventional electrochemical techniques such as cyclic voltammetry. This property, when combined with their ability to host a wide variety of species, has allowed development of a variety of devices of interest in electrochemistry and analytical chemistry. Examples include cathodes for fuels cells, electrochromic devices, biosensors, and amperometric sensors for analytes in the gas phase. In this review, the emphasis will be on reported applications to analytical chemistry; however, studies on the general properties of these materials and on their use in electrochemical science also will be summarized because they may provide the basis for further development of sensors.  相似文献   

13.
This paper presents recent achievements in the field of analytical application of conducting polymers, most of which were published in the last five years. Based on 171 references mainly to original papers in international scientific journals, the applications of conducting polymers in the design of electrochemical and optical sensors, enzymatic biosensors and immunosensors are reviewed together with applications in analytical preconcentration procedures and high-performance separation techniques.  相似文献   

14.
A photochemical approach toward the generation of enzyme‐containing redox polymer networks, which are the key material in enzymatic sensors and biofuel cells, is described. The approach is based on the incorporation of photo‐reactive benzophenone groups into the redox polymers. The obtained polymers are then deposited on the surface of glassy carbon electrodes and cross‐linked by illumination with UV light at 365 nm. If this step is done in the presence of the enzyme glucose oxidase, functional electrodes are obtained that yield electrical power upon addition of glucose. This work specifically addresses the question of electrode stability in buffer and demonstrates how slight variations in the chemistry of the redox polymer have a dramatic effect on the electrochemical performance of the electrodes. Different ferrocene‐containing redox polymer networks are synthesized and their properties in physiological buffer are studied.

  相似文献   


15.
Carbon nanotubes (CNTs) have long been recognized as the stiffest and strongest man-made material known to date.In addition,their high electrical conductivity has roused interest in the areas of electrical appliances and communication related applications.However,due to their miniature size,the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers.In order to enhance their chemical affinity to engineering polymer matrices,chemical modification of the graphitic sidewalls and tips is necessary.The mechanical and electrical properties to date of a whole range of nanocomposites of various carbon nanotube contents are also reviewed in this attempt to facilitate progress in this emerging area.Recently,carbonaceous nano-fillers such as graphene and carbon nanotubes (CNTs) play a promising role due to their better structural and functional properties and broad range of applications in every field.Since CNTs usually form stabilized bundles due to van der Waals interactions,they are extremely difficult to disperse and align in a polymer matrix.The biggest issues in the preparation of CNTs reinforced composites reside in efficient dispersion of CNTs into a polymer matrix,the assessment of the dispersion,and the alignment and control of the CNTs in the matrix.An overview of various CNT functionalization methods is given.In particular,CNT functionalization using click chemistry and the preparation of CNT composites employing hyperbranched polymers are stressed as potential techniques to achieve good CNT dispersion.In addition,discussions on mechanical,thermal,electrical,electrochemical and applications ofpolymer/CNT composites are also included.  相似文献   

16.
Nanomaterial-enabled electrochemical sensors are designed as an economical, efficient, and user-friendly analytical tool for on-site and routine nitrate analysis over a wide range of environmental samples. The remarkable advances and tunable attributes of nanomaterials have greatly improved the analytical performance of electrochemical nitrate sensors. In this review, a comprehensive elucidation of the recent advances in nanomaterial-based electrochemical nitrate sensors is presented. The review firstly provides a general introduction, followed by typical electrochemical sensing methods. The next two sections detail various nanomaterials, including graphene derivatives, carbon nanotubes/fibers, metal/bimetal/metal oxide nanoparticles, and conducting polymers for modifying electrodes in enzymatic and non-enzymatic electrochemical nitrate sensors. Finally, the perspectives and current challenges in achieving real-world applications of nanomaterial-based electrochemical nitrate sensors are outlined.  相似文献   

17.
The present short review deals with electroanalytical aspects of electrochemical response of ascorbic acid (Vitamin C) at conducting and electrogenerated polymer modified electrodes. Two main topics are considered: (i) electrocatalytic oxidation of ascorbate at conducting polymer modified electrodes, leading to electroanalytical techniques for ascorbate assay, and (ii) retardation of ascorbate penetration through a layer of electrogenerated polymers, leading to permselective coatings and their diverse uses, especially for biosensing devices.  相似文献   

18.
This review addresses recent developments in electrochemistry and electroanalytical chemistry of carbon nanotubes (CNTs). CNTs have been proved to possess unique electronic, chemical and structural features that make them very attractive for electrochemical studies and electrochemical applications. For example, the structural and electronic properties of the CNTs endow them with distinct electrocatalytic activities and capabilities for facilitating direct electrochemistry of proteins and enzymes from other kinds of carbon materials. These striking electrochemical properties of the CNTs pave the way to CNT-based bioelectrochemistry and to bioelectronic nanodevices, such as electrochemical sensors and biosensors. The electrochemistry and bioelectrochemistry of the CNTs are summarized and discussed, along with some common methods for CNT electrode preparation and some recent advances in the rational functionalization of the CNTs for electroanalytical applications.  相似文献   

19.
This work reports on a comparative study of the electrochemical performance of carbon nanotubes-based electrodes in micellar media and their application for amperometric detection in micellar electrokinetic capillary chromatography (MEKC) separations. These electrodes were prepared in two different ways: immobilization of a layer of carbon nanotubes dispersed in polyethylenimine (PEI), ethanol or Nafion onto glassy carbon electrodes or preparation of paste electrodes using mineral oil as binder. Scanning electron microscopy (SEM) was employed for surface morphology characterization while cyclic voltammetry of background electrolyte was used for capacitance estimation. The amperometric responses to hydrogen peroxide, amitrol, diuron and 2,3-diclorophenol (2,3CP) in the presence and in the absence of sodium dodecylsulphate (SDS) were studied by flow injection analysis (FIA), demonstrating that the electrocatalytic activity, background current and electroanalytical performance were strongly dependent on the electrodes preparation procedure. Glassy carbon electrodes modified with carbon nanotubes dispersed in PEI (GC/(CNT/PEI)) displayed the most adequate performance in micellar media, maintaining good electrocatalytic properties combined with acceptable background currents and resistance to passivation. The advantages of using GC/(CNT/PEI) as detectors in capillary electrophoresis were illustrated for the MEKC separations of phenolic pollutants (phenol, 3-chlorophenol, 2,3-dichlorophenol and 4-nitrophenol) and herbicides (amitrol, asulam, diuron, fenuron, monuron and chlortoluron).  相似文献   

20.
The carbon nanotube/polyaniline (CNT/PANI) composites have important potential applications as the electrodes in energy storage devices for their attractive electrochemical properties. In this work, we report a novel method to prepare the interesting paper-like CNT/PANI composites by using the CNT network as the template. Compared with the conventional brittle CNT/PANI composites, these paper-like composites were much thin and flexible. This work demonstrates a new approach, which may transform a brittle polymer into flexible films. Meanwhile, these film electrodes showed much superior electrochemical performance such as higher specific capacitance, lower internal resistivity, and more stability under different current loads. These paper-like composite electrodes have promising applications in new kinds of energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号