首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Microfluidics has made a very impressive progress in the past decades due to its unique and instinctive advantages. Droplet‐based microfluidic systems show excellent compatibility with many chemical and biological reagents and are capable of performing variety of operations that can implement microreactor, complex multiple core–shell structure, and many applications in biomedical research such as drug encapsulation, targeted drug delivery systems, and multifunctionalization on carriers. Droplet‐based systems have been directly used to synthesize particles and encapsulate many biological entities for biomedicine applications due to their powerful encapsulation capability and facile versatility. In this paper, we review its origin, deviation, and evolution to draw a clear future, especially for droplet‐based biomedical applications. This paper will focus on droplet generation, variations and complication as starter, and logistically lead to the numerous typical applications in biomedical research. Finally, we will summarize both its challenge and future prospects relevant to its droplet‐based biomedical applications.  相似文献   

2.
In the last decade, droplet-based microfluidics has undergone rapid progress in the fields of single-cell analysis, digital PCR, protein crystallization and high throughput screening. It has been proved to be a promising platform for performing chemical and biological experiments with ultra-small volumes (picoliter to nanoliter) and ultra-high throughput. The ability to analyze the content in droplet qualitatively and quantitatively is playing an increasing role in the development and application of droplet-based microfluidic systems. In this review, we summarized the analytical detection techniques used in droplet systems and discussed the advantage and disadvantage of each technique through its application. The analytical techniques mentioned in this paper include bright-field microscopy, fluorescence microscopy, laser induced fluorescence, Raman spectroscopy, electrochemistry, capillary electrophoresis, mass spectrometry, nuclear magnetic resonance spectroscopy, absorption detection, chemiluminescence, and sample pretreatment techniques. The importance of analytical detection techniques in enabling new applications is highlighted. We also discuss the future development direction of analytical detection techniques for droplet-based microfluidic systems.  相似文献   

3.
Surfactants in droplet-based microfluidics   总被引:1,自引:0,他引:1  
Baret JC 《Lab on a chip》2012,12(3):422-433
Surfactants are an essential part of the droplet-based microfluidic technology. They are involved in the stabilization of droplet interfaces, in the biocompatibility of the system and in the process of molecular exchange between droplets. The recent progress in the applications of droplet-based microfluidics has been made possible by the development of new molecules and their characterizations. In this review, the role of the surfactant in droplet-based microfluidics is discussed with an emphasis on the new molecules developed specifically to overcome the limitations of 'standard' surfactants. Emulsion properties and interfacial rheology of surfactant-laden layers strongly determine the overall capabilities of the technology. Dynamic properties of droplets, interfaces and emulsions are therefore very important to be characterized, understood and controlled. In this respect, microfluidic systems themselves appear to be very powerful tools for the study of surfactant dynamics at the time- and length-scale relevant to the corresponding microfluidic applications. More generally, microfluidic systems are becoming a new type of experimental platform for the study of the dynamics of interfaces in complex systems.  相似文献   

4.
März A  Henkel T  Cialla D  Schmitt M  Popp J 《Lab on a chip》2011,11(21):3584-3592
This review outlines concepts and applications of droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy (SERS) as well as the advantages of the approach. Even though the droplet-based flow-through technique is utilized in various fields, the review focuses on implementing droplet-based fluidic systems in Raman and SERS as these highly specific detection methods are of major interest in the field of analytics. With the combination of Raman or SERS with droplet-based fluidics, it is expected to achieve novel opportunities for analytics. Besides the approach of using droplet-based microfluidic devices as a detection platform, the unique properties of flow-through systems for the formation of droplets are capitalized to produce SERS active substrates and to accomplish uniform sample preparation. Within this contribution, previous reported applications on droplet-based flow-through Raman and SERS approaches and the additional benefit with regard to the importance in the field of analytics are considered.  相似文献   

5.
尹方超  温慧  朱国丽  秦建华 《色谱》2016,34(11):1031-1042
秀丽隐杆线虫具有体积小、生命周期短、结构简单和高基因保守性等特点,是生命科学研究领域中的一种重要模式生物。微流控芯片的通道尺寸与线虫大小相匹配,并可实现灵活集成的线虫操控,为线虫研究提供了一种全新的平台。在微流控平台上,线虫长期培养、固定、分选、精确刺激传递和单线虫包裹等单元操作已经实现,并被应用于线虫神经生物学、行为学、衰老及发育、药物筛选等研究中。该文着重介绍近几年基于微流控芯片技术的线虫研究最新进展,并对其应用前景予以展望。  相似文献   

6.
Recently, chemical operations with microfluidic devices, especially droplet-based operations, have attracted considerable attention because they can provide an isolated small-volume reaction field. However, analysis of these operations has been limited mostly to aqueous-phase reactions in water droplets due to device material restrictions. In this study, we have successfully demonstrated droplet formation of five common organic solvents frequently used in chemical synthesis by using a simple silicon/glass-based microfluidic device. When an immiscible liquid with surfactant was used as the continuous phase, the organic solvent formed droplets similar to water-in-oil droplets in the device. In contrast to conventional microfluidic devices composed of resins, which are susceptible to swelling in organic solvents, the developed microfluidic device did not undergo swelling owing to the high chemical resistance of the constituent materials. Therefore, the device has potential applications for various chemical reactions involving organic solvents. Furthermore, this droplet generation device enabled control of droplet size by adjusting the liquid flow rate. The droplet generation method proposed in this work will contribute to the study of organic reactions in microdroplets and will be useful for evaluating scaling effects in various chemical reactions.  相似文献   

7.
Xing S  Harake RS  Pan T 《Lab on a chip》2011,11(21):3642-3648
Droplet-based transport phenomena driven by surface tension have been explored as an automated pumping source for a number of chemical and biological applications. In this paper, we present a comprehensive theoretical and experimental investigation of unconventional droplet-based motions on a superhydrophobic-patterned surface microfluidic (S(2)M) platform. The S(2)M surfaces are monolithically fabricated using a facile two-step laser micromachining technique on regular polydimethylsiloxane (PDMS) chemistry. Unlike the traditional droplet-driven pumps built on an enclosed microfluidic network, the S(2)M network pins the liquid-solid interface of droplets to the lithographically defined wetting boundary and establishes a direct linkage between the volumetric and hydraulic measures. Moreover, diverse modes of droplet motions are theoretically determined and experimentally characterized in a bi-droplet configuration, among which several unconventional droplet-driven transport phenomena are first demonstrated. These include big-to-small droplet merging, droplet balancing, as well as bidirectional transporting, in addition to the classic small-to-big droplet transition. Furthermore, multi-stage programmable bidirectional pumping has been implemented on the S(2)M platform, according to the newly established droplet manipulation principle, to illustrate its potential use for automated biomicrofluidic and point-of-care diagnostic applications.  相似文献   

8.
A droplet-based electrochemical digital magnetofluidics system has been developed. The system relies on the magnetic movement, in air, of different aqueous microdroplets containing magnetic microparticles--serving as the 'sample', 'blank', 'wash' and 'reagent' solutions--into and out of a three-electrode assembly. The movement of all droplets was controlled using the magnetic fields generated by three separate external magnets positioned below the superhydrophobic surface. Square-wave voltammetry was used for rapid measurements of dopamine in multiple successive microdrops with minimal cross talk. The ability of the droplet-based electrochemical microfluidic system to manipulate microliter solutions was also illustrated in bioassays of glucose, involving the merging of enzyme (GOx) and substrate droplets, followed by chronoamperometric measurements of the hydrogen peroxide product in the merged droplet. Variables of the new electrochemical digital magnetomicrofluidic technique were examined and optimized. The new droplet-based electrochemical microfluidic system offers a promising platform for automated clinical diagnostics and drug discovery.  相似文献   

9.
Microfluidic system, or lab-on-a-chip, has grown explosively. This system has been used in research for the first time and then entered in the clinical section. Due to economic reasons, this technique has been used for screening of laboratory and clinical indices. The microfluidic system solves some difficulties accompanied by clinical and biological applications. In this review, the interpretation and analysis of some recent developments in microfluidic systems in biomedical applications with more emphasis on tissue engineering and cancer will be discussed. Moreover, we try to discuss the features and functions of microfluidic systems.  相似文献   

10.
We report recent advances in the field of droplet-based microfluidics. Specifically, we highlight the unique features of such platforms for high-throughput experimentation; describe functional components that afford complex analytical processing and report on applications in synthesis, high-throughput screening, cell biology and synthetic and systems biology. Issues including the integration of high-information content detection methods, long term droplet stability and opportunities for large scale and intelligent biological experimentation are also discussed.  相似文献   

11.
H Zec  TD Rane  TH Wang 《Lab on a chip》2012,12(17):3055-3062
We propose a highly versatile and programmable nanolitre droplet-based platform that accepts an unlimited number of sample plugs from a multi-well plate, performs digitization of these sample plugs into smaller daughter droplets and subsequent synchronization-free, robust injection of multiple reagents into the sample daughter droplets on-demand. This platform combines excellent control of valve-based microfluidics with the high-throughput capability of droplet microfluidics. We demonstrate the functioning of a proof-of-concept device which generates combinatorial mixture droplets from a linear array of sample plugs and four different reagents, using food dyes to mimic samples and reagents. Generation of a one dimensional array of the combinatorial mixture droplets on the device leads to automatic spatial indexing of these droplets, precluding the need to include a barcode in each droplet to identify its contents. We expect this platform to further expand the range of applications of droplet microfluidics to include applications requiring a high degree of multiplexing as well as high throughput analysis of multiple samples.  相似文献   

12.
The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10−8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.  相似文献   

13.
Droplet microfluidics for the study of artificial cells   总被引:1,自引:0,他引:1  
In this review, we describe recent advances in droplet-based microfluidics technology that can be applied in studies of artificial cells. Artificial cells are simplified models of living cells and provide valuable model platforms designed to reveal the functions of biological systems. The study of artificial cells is promoted by microfluidics technologies, which provide control over tiny volumes of solutions during quantitative chemical experiments and other manipulations. Here, we focus on current and future trends in droplet microfluidics and their applications in studies of artificial cells.  相似文献   

14.
This paper reports a droplet-based microfluidic device composed of patterned co-planar electrodes in an all-in-a-single-plate arrangement and coated with dielectric layers for electrowetting-on-dielectric (EWOD) actuation of discrete droplets. The co-planar arrangement is preferred over conventional two-plate electrowetting devices because it provides simpler manufacturing process, reduced viscous drag, and easier liquid-handling procedures. These advantages lead to more versatile and efficient microfluidic devices capable of generating higher droplet speed and can incorporate various other droplet manipulation functions into the system for biological, sensing, and other microfluidic applications. We have designed, fabricated, and tested the devices using an insulating layer with materials having relatively high dielectric constant (SiO(2)) and compared the results with polymer coatings (Cytop) with low dielectric constant. Results show that the device with high dielectric layer generates more reproducible droplet transfer over a longer distance with a 25% reduction in the actuation voltage with respect to the polymer coatings, leading to more energy efficient microfluidic applications. We can generate droplet speeds as high as 26 cm/s using materials with high dielectric constant such as SiO(2).  相似文献   

15.
Photocurable systems, which offer advantages such as microfabrication and in situ fabrication, have been widely used as dental restorative materials. Because the visible light-curable (VLC) system causes no biological damage, it is popular as a dental material and is being investigated by many researchers for other medical applications. Here, the principle of the VLC system is explained and recent progress in key components including photoinitiators, monomers, macromers, and prepolymers is discussed. Finally, biomedical applications for drug delivery and soft tissue engineering are reviewed. Considering the recent development of VLC systems, its importance in the field of medical applications is expected to continue to increase in the future.  相似文献   

16.
Droplet-based microreactors are of great interest to researchers due to their incredible ability in the synthesis of micro/nano-materials with multi-function and complex geometry. In recent years, a broad range of micro/nano-materials has been synthesized in droplet-based microreactors, which provide apparent advantages, such as better reproducibility, reliable automation, and accurate manipulation. In this review, we give a comprehensive and in-depth insight into droplet-based microreactors, covering fundamental research from droplet generation and manipulation to the applications of droplet-based microreactors in micro/nano-material generation. We also explore the outlook for droplet-based microreactors and challenges that lie ahead and give a possible effort direction. We hope this review will promote communications among researchers and entrepreneurs.  相似文献   

17.
The primary requirement for a mixing operation in droplet-based microfluidic devices is an accurate pairing of droplets of reaction fluids over an extended period of time. In this paper, a novel device for self-synchronous production of droplets has been demonstrated. The device uses a change in impedance across a pair of electrodes introduced due to the passage of a pre-formed droplet to generate a second droplet at a second pair of electrodes. The device was characterised using image analysis. Droplets with a volume of ~23.5 ± 3.1 nl (i.e.~93% of the volume of pre-formed droplets) were produced on applying a voltage of 500 V. The synchronisation efficiency of the device was 83%. As the device enables self-synchronised production of droplets, it has a potential to increase the reliability and robustness of mixing operations in droplet-based microfluidic devices.  相似文献   

18.
Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip systems, especially in a point-of-care setting. Conventional microfluidic devices are usually based on continuous-flow in microchannels, and offer little flexibility in terms of reconfigurability and scalability. Handling of real physiological samples has also been a major challenge in these devices. We present an alternative paradigm--a fully integrated and reconfigurable droplet-based "digital" microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. The microdroplets, which act as solution-phase reaction chambers, are manipulated using the electrowetting effect. Reliable and repeatable high-speed transport of microdroplets of human whole blood, serum, plasma, urine, saliva, sweat and tear, is demonstrated to establish the basic compatibility of these physiological fluids with the electrowetting platform. We further performed a colorimetric enzymatic glucose assay on serum, plasma, urine, and saliva, to show the feasibility of performing bioassays on real samples in our system. The concentrations obtained compare well with those obtained using a reference method, except for urine, where there is a significant difference due to interference by uric acid. A lab-on-a-chip architecture, integrating previously developed digital microfluidic components, is proposed for integrated and automated analysis of multiple analytes on a monolithic device. The lab-on-a-chip integrates sample injection, on-chip reservoirs, droplet formation structures, fluidic pathways, mixing areas and optical detection sites, on the same substrate. The pipelined operation of two glucose assays is shown on a prototype digital microfluidic lab-on-chip, as a proof-of-concept.  相似文献   

19.
There has been recent interest in developing new, targeted, perfluorocarbon (PFC) droplet-based contrast agents for medical imaging (e.g., magnetic resonance imaging, X-ray/computed tomography, and ultrasound imaging). However, due to the large number of potential PFCs and droplet stabilization strategies available, it is challenging to determine in advance the PFC droplet formulation that will result in the optimal in vivo behavior and imaging performance required for clinical success. We propose that the integration of fluorescent quantum dots (QDs) into new PFC droplet agents can help to rapidly screen new PFC-based candidate agents for biological compatibility early in their development. QD labels can allow the interaction of PFC droplets with single cells to be assessed at high sensitivity and resolution using optical methods in vitro, complementing the deeper depth penetration but lower resolution provided by PFC droplet imaging using in vivo medical imaging systems. In this work, we introduce a simple and robust method to miscibilize silica-coated nanoparticles into hydrophobic and lipophobic PFCs through fluorination of the silica surface via a hydrolysis-condensation reaction with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. Using CdSe/ZnS core/shell QDs, we show that nanoscale, QD-labeled PFC droplets can be easily formed, with similar sizes and surface charges as unlabeled PFC droplets. The QD label can be used to determine the PFC droplet uptake into cells in vitro by fluorescence microscopy and flow cytometry, and can be used to validate the fate of PFC droplets in vivo in small animals via fluorescence microscopy of histological tissue sections. This is demonstrated in macrophage and cancer cells, and in rabbits, respectively. This work reveals the potential of using QD labels for rapid, preclinical, optical assessment of different PFC droplet formulations for their future use in patients.  相似文献   

20.
Z Zhu  W Zhang  X Leng  M Zhang  Z Guan  J Lu  CJ Yang 《Lab on a chip》2012,12(20):3907-3913
Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100?000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号