首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
The systematic exploration of the modification of polyethylene imine with guanidinium and octyl groups has led to the identification of a catalyst, CD6, which accelerates the phosphate transfer reaction of HPNP (2‐hydroxypropyl‐4‐nitrophenyl phosphate) in the presence of divalent metals such as Zn2+, Co2+, Mg2+ or Ni2+. CD6 exhibits saturation kinetics that are described by Michaelis–Menten parameters Km ranging from 2.5–8 mM and kcat ranging from 0.0014–0.09 s?1. For ZnII–CD6 this corresponds to an overall acceleration kcat/kuncat of 3.8×105 and a catalytic proficiency (kcat/Km)/kuncat of 1.5×108. Catalysis by ZnII–CD6 is specifically inhibited by inorganic phosphate, allowing turnover regulation by product inhibition. This effect stands in contrast to ZnII‐catalysed transesterification of HPNP in water or by the synzymes CoII–CD6 and NiII–CD6, with which no such interference by product is observed. These characteristics render synzyme ZnII–CD6 an efficient enzyme model that reflects enzyme‐like properties in a wide range of features.  相似文献   

2.
Abstract

The kinetics and stability constants of l-tyrosine complexation with copper(II), cobalt(II) and nickel(II) have been studied in aqueous solution at 25° and ionic strength 0.1 M. The reactions are of the type M(HL)(3-n)+ n-1 + HL- ? M(HL)(2-n)+n(kn, forward rate constant; k-n, reverse rate constant); where M=Cu, Co or Ni, HL? refers to the anionic form of the ligand in which the hydroxyl group is protonated, and n=1 or 2. The stability constants (Kn=kn/k-n) of the mono and bis complexes of Cu2+, Co2+ and Ni2+ with l-tyrosine, determined by potentiometric pH titration are: Cu2+, log K1=7.90 ± 0.02, log K2=7.27 ± 0.03; Co2+, log K1=4.05 ± 0.02, log K2=3.78 ± 0.04; Ni2+, log K1=5.14 ± 0.02, log K2=4.41 ± 0.01. Kinetic measurements were made using the temperature-jump relaxation technique. The rate constants are: Cu2+, k1=(1.1 ± 0.1) × 109 M ?1 sec?1, k-1=(14 ± 3) sec?1, k2=(3.1 ± 0.6) × 108 M ?1 sec?1, k?2=(16 ± 4) sec?1; Co2+, k1=(1.3 ± 0.2) × 106 M ?1 sec?1, k-1=(1.1 ± 0.2) × 102 sec?1, k2=(1.5 ± 0.2) × 106 M ?1 sec?1, k-2=(2.5 ± 0.6) × 102 sec?1; Ni2+, k1=(1.4 ± 0.2) × 104 M ?1 sec?1, k-1=(0.10 ± 0.02) sec?1, k2=(2.4 ± 0.3) × 104 M ?1 sec?1, k-2=(0.94 ± 0.17) sec?1. It is concluded that l-tyrosine substitution reactions are normal. The presence of the phenyl hydroxyl group in l-tyrosine has no primary detectable influence on the forward rate constant, while its influence on the reverse rate constant is partially attributed to substituent effects on the basicity of the amine terminus.  相似文献   

3.
In this work, a capillary electrophoretic methodology for the enantioselective in vitro evaluation of drugs metabolism is applied to the evaluation of fluoxetine (FLX) metabolism by cytochrome 2D6 (CYP2D6). This methodology comprises the in‐capillary enzymatic reaction and the chiral separation of FLX and its major metabolite, norfluoxetine enantiomers employing highly sulfated β‐CD and the partial filling technique. The methodology employed in this work is a fast way to obtain a first approach of the enantioselective in vitro metabolism of racemic drugs, with the additional advantage of an extremely low consumption of enzymes, CDs and all the reagents involved in the process. Michaelis–Menten kinetic parameters (Km and Vmax) for the metabolism of FLX enantiomers by CYP2D6 have been estimated by nonlinear fitting of experimental data to the Michaelis–Menten equation. Km values have been found to be 30 ± 3 μM for S‐FLX and 39 ± 5 μM for R‐FLX. Vmax estimations were 28.6 ± 1.2 and 34 ± 2 pmol·min?1·(pmol CYP)?1 for S‐ and R‐FLX, respectively. Similar results were obtained using a single enantiomer (R‐FLX), indicating that the use of the racemate is a good option for obtaining enantioselective estimations. The results obtained show a slight enantioselectivity in favor of R‐FLX.  相似文献   

4.
Yulong Gao  Tao Wang  Fengyu Liu 《中国化学》2016,34(12):1297-1303
The electrochemiluminescence (ECL) of the Ru(phen)32+/thymine (T) system at bare and graphene oxide (GO)‐modified glassy carbon (GC) electrodes was utilized to determine Hg2+ in tap water. The ECL intensity of Ru(phen)32+ was considerably enhanced by the addition of thymine because of the occurrence of ECL reaction between them. Subsequently, the ECL intensity of Ru(phen)32+/T system rapidly decreased with the addition of Hg2+ because of the formation of a T‐Hg2+‐T complex. A linear response (R2=0.9914) was obtained over a Hg2+ concentration range of 1.0×10?9 mol/L to 1.0×10?5 mol/L with a detection limit of 3.4×10?10 mol/L at a bare GC electrode in 0.1 mol/L phosphate buffer (pH=8.0). The detection limit can be further reduced to 4.2×10?12 mol/L after modification of the GC electrode by GO. To verify its applicability, the proposed method was utilized to determine Hg2+ in tap water and simulated wastewater. The method exhibited good reproducibility and stability and thus reveals the possibility of developing a novel ECL detection method for Hg2+.  相似文献   

5.
A new method to estimate the leucine aminopeptidase (LAP, EC 3.4.11.1) activity using capillary electrophoresis coupled with electrochemiluminescence (ECL) is described. The liberated proline produced by LAP catalyzing the hydrolysis reaction of leucin–proline was used as an ECL coreagent to enhance Ru(bpy)32+ ECL signals efficiently. The detection limit for proline was 2.88 × 10?6 m (signal‐to‐noise ratio 3), which was equal to 9.60 × 10?8 units of LAP being used to catalyze leucin–proline for 1 min. The Michaelis constant Km (2.07 × 10?2 mol/L) and the maximum reaction velocity Vmax (1.06 × 10?5 mol/L/min) of LAP for leucin–proline are reported. The reaction conditions including the concentration of metal ions, incubation temperature and pH were optimized. This method was successfully applied to detect LAP activity in plasma and the results were in good agreement with that obtained by the clinical method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The mediation of electron‐transfer by oxo‐bridged dinuclear ruthenium ammine [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ for the oxidation of glucose was investigated by cyclic voltammetry. These ruthenium (III) complexes exhibit appropriate redox potentials of 0.131–0.09 V vs. SCE to act as electron‐transfer mediators. The plot of anodic current vs. the glucose concentration was linear in the concentration range between 2.52×10?5 and 1.00×10?4 mol L?1. Moreover, the apparent Michaelis‐Menten kinetic (KMapp) and the catalytic (Kcat) constants were 8.757×10?6 mol L?1 and 1,956 s?1, respectively, demonstrating the efficiency of the ruthenium dinuclear oxo‐complex [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ as mediator of redox electron‐transfer.  相似文献   

7.
This paper presents the application of the tubular detector based on silver solid amalgam (TD‐AgSA) for electrochemical determinations of reducible inorganic (Cd2+, Zn2+) and organic (4‐nitrophenol) compounds under flow injection analysis conditions. The newly developed TD‐AgSA is simple, robust and inexpensive. The limits of detections of Zn2+, Cd2+ and 4‐nitrophenol are 1.4×10?6, 7.0×10?7, and 5.0×10?7 mol dm?3, respectively (i.e. 0.09, 0.08 and 0.07 ppm). The obtained results proved the long‐term stability of the detector (RSD of the determination of Zn2+, Cd2+, and 4‐nitrophenol were 0.8, 0.9 and 0.8 % (n=10; cZn=7.7×10?5 mol dm?3, cCd=4.5×10?5 mol dm?3 and c4‐NPh=3.6×10?5 mol dm?3), respectively and its applicability for cathodic measurements in aqueous solutions at potentials up to ?2 V.  相似文献   

8.
9.
The stopped‐flow technique was used to measure the rates of formation and dissociation of tetrahedral [ML2] complexes (M2+=Ni2+ or Co2+) of four bidentate S2‐donor ‘dithioimidodiphosphato’ ligands L? (HL=[R1R2P(?S)]NH[P(?S)R3R4], R1 to R4=alkyl) at 25.0° in MeOH/H2O 95 : 5 (v/v) solution and in the presence of either MOPS (=3‐(morpholin‐4‐yl)propane‐1‐sulfonic acid) or 2,6‐lutidine (=2,6‐dimethylpyridine) buffers. The kinetically determined equilibrium formation constants for [ML]+ ions (M=Ni or Co) are 10?5 K=0.50±0.01 or 1.64±0.07 l mol?1 for L=L3 (R1=R2=Me(CH2)2CH(Me), R3=R4=Me2CH), 1.27±0.02 or 7.93±0.09 l mol?1 for L=L7 (R1 to R4=Me2CHCH2), 0.88±0.04 or 3.84±0.13 l mol?1 for L=L8 (R1 to R4=Me2CH), and in case of Ni2+ 1.88±0.04 l mol?1 for L=L6 (R1=R3=Bu, R2=R4=tBu) (see Table 3; for L3 and L6–L8, see Table 1). Whereas the tetrahedral Ni2+ complexes dissociate more slowly than the analogous Co2+ species, in all cases, the Co2+ complexes are more stable than those of Ni2+ due to their larger formation rate constants (Table 3). Reactions of Cu2+ with eight ligands HL (R1 to R4=alkyl, alkoxy, aryl, and aryloxy) show that formation of intensely colored tetrahedral [CuIIL2] species is too fast be measured with the available stopped‐flow apparatus (t1/2<2 ms), but the subsequent rates of reduction of [CuIIL2] to give trinuclear products [CuI3L3] are measurable. An X‐ray analysis establishes the structure of one of the [Cu3L3] complexes, where R1=R2=Me2CHO and R3=R4=2‐(tert‐butyl)phenyl (L=L5), and a multiwavelength stopped‐flow kinetic experiment establishes the spectrum of a tetrahedral [CuIIL2] species prior to the reduction reactions. The redox reactions proceed at 25.0° with first‐order rate constants in the range 0.285 s?1 (R1 to R4=PhO; L=L11) to 2.58?10?4 s?1 (R1 to R4=Me2CHCH2; L=L7) (Table 4).  相似文献   

10.
The syntheses of a series of l‐methyl‐3‐aryl‐substituted titanocene and zirconocene dichlorides are reported. These complexes are synthesized by the reaction of 2‐ and 3‐methyl‐6, 6‐dimethylfulvenes (1:4) with aryllithium, followed by the reaction with TiCl4·2THF, ZrCl4 and (CpTiCl2)2O respectively, to give complexes 1–5. The complex [η5‐1‐methyl‐3‐(α, α‐dimethylbenzyl) cyclopentadienyl] titanium dichloride has been studied by X‐ray diffraction. The red crystal of this complex is monoclinic, space group P2t/C with unit cell parameters: a =6.973(6) × 10?1 nm, b =36.91(2) × 10?1 nm, c = 10.063(4) × 10?1 nm, α=β= γ = 93.35(5)°, V = 2584(5) × 10?3 nm3 and Z = 4. Refinement for 1004 observed reflections gives the final R of 0.088. There are four independent molecules per unit cell.  相似文献   

11.
When the concentration of dodecyl benzene sulfonic acid sodium salt (SDBS) is 0.7 mmol·L?1, the electrochemical and electrochemiluminescence (ECL) intensity of Ru(bpy)32+‐chlorpheniramine maleate (CPM) system at the Au electrode were studied. The results showed that compared with the absence of SDBS, enhancement of the ECL intensity was 14‐fold at Au electrode. Base on this, an ECL method was established for efficient and simple determination of CPM at Au electrode. Under the optimum experimental condition, the enhanced ECL intensities had good linear relationship with the concentration of CPM in the range of 1.0×10?4–1.0×10?7 mol·L?1, and a linear regression equation was obtained as follows: I (counts)=48.805×106c+394.03 (r=0.9975), the detection limit for CPM was 1.4×10?8 mol·L?1. The RSD for 5 times determinations of 1.0×10?5 mol·L?1 CPM was 3.2%. The results of recovery test were between 96.3%–102.5%, and the RSD of recovery test (n=5) was 2.7%. In addition, eleven kinds of tertiary amines‐Ru(bpy)32+ systems were investigated in the absence and presence of SDBS. The results showed that the enhancement of SDBS on ECL intensity of tertiary amines‐Ru(bpy)32+ systems was universal.  相似文献   

12.

Dynamic interfacial tension (DIT) and interface adsorption kinetics at the n‐decane/water interface of 3‐dodecyloxy‐2‐hydroxypropyl trimethyl ammonium chloride (R12TAC) were measured using spinning drop method. The effects of RnTAC concentration and temperature on DIT have been investigated, the reason of the change of DIT with time has been discussed. The effective diffusion coefficient, D a, and the adsorption barrier, ?a, have been obtained with extended Word‐Tordai equation. The results show that the higher the concentration of surfactants is, and the smaller will be the DIT and the lower will be the curve of the DIT, and the R12TAC solutions follow a mixed diffusion‐activation adsorption mechanism in this investigation. With increase of concentration in bulk solution of R12TAC from 8×10?4 mol · dm?3 to 4×10?3 mol · dm?3, D a decreases from 2.02×10?10 m?2 · s?1 to 1.4×10?11 m?2 · s?1 and ? a increases from 2.60 kJ · mol?1 to 9.32 kJ · mol?1, while with increase of temperature from 30°C to 50°C, D a increases from 2.02×10?10 m?2 · s?1 to 5.86×10?10 m?2 · s?1 and εa decreases from 2.60 kJ · mol?1 to 0.73 kJ · mol?1. This indicates that the diffusion tendency becomes weak with increase strength of the interaction between surfactant molecules and that the thermo‐motion of molecules favors interface adsorption.  相似文献   

13.
An open‐framework chalcogenidoantimonate, namely, [CH3NH3]4Ga4SbS9S0.28O0.72H ( 1 ), has been solvothermally synthesized and structurally characterized. Interestingly, 1 showed Ni2+ ion‐exchange properties and wide pH resistance, with a maximum exchange capacity of 76.9 mg g?1. To the best of our knowledge, this is the first example of amine‐directed three‐dimensional (3D) heterometallic chalcogenidometalates for highly selective Ni2+ ion capture with a high distribution coefficient (Kd=1.65×105 mL g?1).  相似文献   

14.
An effective, stable enzymatic glucose biosensor was fabricated on a glassy carbon electrode (GCE) surface using simple multicomposite materials (MCM): a solution of prepared poly(diallyldimethylammonium chloride)‐capped gold nanoparticles‐nickel ferrite particles‐carbon nanotubes‐chitosan (PDDA‐AuNPs‐NiFe2O4‐CNTs‐CHIT), electropolymerization of poly(o‐phenylenediamine) (PoPD) and immobilization of glucose oxidase (GOx). Biocompatibility and synergy of the MCM enhanced the immobilization and the reaction of GOx and as well as the electron transfer from an oxidation reaction of hydrogen peroxide in the system. The NiFe2O4 was synthesized by co‐precipitation and calcined at 700 °C. Characterization was carried out by field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) which presented both tetrahedral and octahedral metal stretching with a cubic NiFe2O4 crystal phase. The GOx/PoPD/MCM/GCE yielded a 0.77 s?1 charge transfer rate constant (Ks), a 2.28×10?6 cm2 s?1 diffusion coefficient value (D), a 0.21 mm2 electroactive surface area (Ae) and a 1.93×10?8 mol cm?2 surface concentration ( ) as determined by cyclic voltammetry. The modified electrode showed a durable operation time (n=97, more than 50 % I), repeatability (%RSD=0.38, n=10), reproducibility (%RSD=1.60, n=10), high sensitivity (853.07 μA mM?1 cm?2), selectivity without effects of electroactive species (aspirin, uric acid, caffeine, cholesterol, ascorbic acid and dopamine) and two linear ranges from 0.5 to 10 μM (R2=0.998) and 10 to 15,000 μM (R2=0.991) with a low detection limit (0.35 μM, S/N=3). Its Michaelis‐Menten constant (Km) was calculated as 93.51 μM with 46.30 μA maximum current (Imax). This proposed simple method was successfully applied for glucose determination in human blood samples.  相似文献   

15.
《Analytical letters》2012,45(4):661-676
Abstract

A novel amperometric sensor of hydrogen peroxide was constructed. Hemoglobin (Hb) was successfully immobilized on nanometer‐sized SiO2, which was supported by chitosan. Chitosan was acted as dispersant. The determination of hydrogen peroxide was performed in the presence of an electron mediator hydroquinone. Hb immobilized on the SiO2/chitosan composite film displayed excellent electrocatalytical activity to the reduction of H2O2. The linear range of detection towards H2O2 was from 6.25×10?7 to 1.63×10?4mol/L with a detection limit of 1.8×10?7mol/L (S/N=3). The apparent Michaelis‐Menten constant (K app M) was found to be 0.75mmol/L.  相似文献   

16.
Three new nickel(II) complexes formulated as [Ni2(1,3‐tpbd)(diimine)2(H2O)2]4+ [1,3‐tpbd = N,N,N′,N′‐tetrakis(2‐pyridylmethyl)benzene‐1,3‐diamine, where diimine is an N,N‐donor heterocyclic base like 1,10‐phenanthroline (phen),2,2′‐bipyridine (bpy), 4,5‐diazafluoren‐9‐one (dafo)], have been synthesized and structurally characterized by X‐ray crystallography: [Ni2(1,3‐tpbd)(phen)2(H2O)2]4+ (1), [Ni2(1,3‐tpbd)(bpy)2(H2O)2]4+(2) and [Ni2(1,3‐tpbd)(dafo)2(H2O)2]4+ (3). Single‐crystal diffraction reveals that the metal atoms in the complexes are all in a distorted octahedral geometry and in a trans arrangement around 1,3‐tpbd ligand. The interactions of the three complexes with calf thymus DNA (CT‐DNA) have been investigated by UV absorption, fluorescence spectroscopy, circular dichroism and viscosity. The apparent binding constant (Kapp) values are calculated to be 1.91 × 105 m ?1 for 1, 1.18 × 105 m ?1 for 2, and 1.35 × 105 m ?1 for 3, following the order 1 > 3 > 2. The higher DNA binding affinity of 1 is due to the involvement in partial insertion of the phen ring between the DNA base pairs. A decrease in relative viscosities of DNA upon binding to 1–3 is consistent with the DNA binding affinities. These complexes efficiently display oxidative cleavage of supercoiled DNA in the presence of H2O2 (250 µ m ), with 3 exhibiting the highest nuclease activity. The rate constants for the conversion of supercoiled to nicked DNA are 5.28 × 10?5 s?1 (for 1), 6.67 × 10?5 s?1 (for 2) and 1.39 × 10?4 s?1 (for 3), also indicating that complex 3 shows higher catalytic activity than 1 and 2. Here the nuclease activity is not readily correlated to binding affinity. The inhibitory effect of complexes 1–3 on thioredoxin reductase has also been examined. The IC50 values are calculated to be 26.54 ± 0.57, 31.03 ± 3.33 and 8.69 ± 2.54 µ m , respectively, showing a more marked inhibitory effect on thioredoxin reductase by complex 3 than the other two complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A family of 16 salicylaldarylimine titanium(IV) dichloride complexes bearing diallylamino group, namely {2‐[3‐ or 4‐(CH2?CH? CH2)2NC6H4N?CH]‐6‐R1‐4‐R2‐C6H2O}2TiCl2 (R1 = t‐Bu, CMe2(Ph); R2 = H, Me, OMe, t‐Bu) have been used for polymerization of ethylene in the presence of methylaluminoxane. The effects of reaction conditions on the polymerization were examined in detail. All the pre‐catalyst are highly active (up to 14.0 × 106 g(PE) mol(Ti)?1 ?1 h?1) for ethylene polymerization at 30°С to 60°С with the activities and MM correlating with the R1‐substituent type and position of NAll2‐group: CMe2(Ph) > t‐Bu and meta‐NAll2 > para‐NAll2 for any R2. Highly linear polyethylenes (Tm's as high as 141.0°С) can be obtained with high molecular weights in the range 0.70 to 4.10 × 106 g mol?1 with disentangled morphology, suitable for technologically more advanced and greeny way to produce high‐modulus high‐strength fibers of ultrahigh molecular weight polyethylene via solid‐state (solvent‐free) deformation processing.  相似文献   

18.
A series of heterometallic 3d–Gd3+ complexes based on a lanthanide metalloligand, [M(H2O)6][Gd(oda)3] ? 3 H2O [M=Cr3+ ( 1‐Cr )] (H2oda=2,2′‐oxydiacetic acid), [M(H2O)6][MGd(oda)3]2 ? 3 H2O [M=Mn2+ ( 2‐Mn ), Fe2+ ( 2‐Fe ) and Co2+ ( 2‐Co )], and [M3Gd2(oda)6(H2O)6] ? 12 H2O [M=Ni2+ ( 3‐Ni ), Cu2+ ( 3‐Cu ), and Zn2+ ( 3‐Zn )], are reported. Magnetic and heat‐capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of ?ΔSm between complexes 2‐Co and 1‐Cr . In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co2+ and Cr3+ ions), and the theoretical calculation suggested a larger ?ΔSm value for 2‐Co (47.8 J K?1 kg?1) than 1‐Cr (37.5 J K?1 kg?1); however, the significant anisotropy of Co2+ ions in 2‐Co , which can result in smaller effective spins, gives a smaller value of ?ΔSm for 2‐Co (32.2 J K?1 kg?1) than for 1‐Cr (35.4 J K?1 kg?1) at ΔH=9 T.  相似文献   

19.
The self‐diffusion (Dc) coefficients of various lanthanum(III) diamagnetic analogues of open‐chain and macrocyclic complexes of gadolinium used as MRI contrast agents were determined in dilute aqueous solutions (3–31 mM ) by pulsed‐field‐gradient (PFG) high‐resolution 1H‐NMR spectroscopy. The self‐diffusion coefficient of H2O (Dw) was obtained for the same samples to derive the relative diffusion constant, a parameter involved in the outersphere paramagnetic‐relaxation mechanism. The results agree with an averaged relative diffusion constant of 2.5 (±0.1)×10?9 and of 3.3 (±0.1)×10?9 m2 s?1 at 25 and 37°, respectively, for 'small' contrast agents (Mr 500–750 g/mol), and with the value of bulk H2O (2.2×10?9 and 2.9×10?9 m2 s?1 at 25° and at 37°, respectively) for larger complexes. The use of the measured values of Dc for the theoretical fitting of proton NMRD curves of gadolinium complexes shows that the rotational correlation times (τR) are very close to those already reported. However, differences in the electronic relaxation time (τSO) at very low field and in the correlation time (τV) related to electronic relaxation were found.  相似文献   

20.
A robust and effective composite film combined the benefits of Nafion, room temperature ionic liquid (RTIL) and multi‐wall carbon nanotubes (MWNTs) was prepared. Hemoglobin (Hb) was successfully immobilized on glassy carbon electrode surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Hb were investigated in detail. A pair of well‐defined and quasi‐reversible redox peaks of Hb was obtained in 0.10 mol·L?1 pH 7.0 phosphate buffer solution (PBS), indicating that the Nafion‐RTIL‐MWNTs film showed an obvious promotion for the direct electron transfer between Hb and the underlying electrode. The immobilized Hb exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0×10?6 to 2.5×10?4 mol·L?1, with a detection limit of 8.0×10?7 mol·L?1 (S/N=3). The apparent Michaelis‐Menten constant (Kmapp) was calculated to be 0.34 mmol·L?1. Moreover, the modified electrode displayed a good stability and reproducibility. Based on the composite film, a third‐generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号