首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
At present, the fundamental frequencies of signals of most commercially available acoustic alarms to deter small cetaceans are below 20 kHz, but it is not well ascertained whether higher frequencies have a deterrent effect on bottlenose dolphins (Tursiops truncatus). Two captive bottlenose dolphins housed in a floating pen were subjected to a continuous pure tone at 50 kHz with a source level of 160 ± 2 dB (re 1 μPa, rms). The behavioral responses of dolphins were judged by comparing surfacing distance relative to the sound source, number of surfacings, and number of echolocation clicks produced, during forty 15 min baseline periods with forty 15 min test periods (four sessions per day, 40 sessions in total). On all 10 study days, surfacing distance and the number of surfacings increased while click production decreased during broadcasts of test sound. The avoidance threshold sound pressure level for a continuous 50 kHz tone for the bottlenose dolphins, in the context of this study, was estimated to be 144 ± 2 dB (re 1 μPa, rms). The results indicated that a continuous 50 kHz tonal signal can deter bottlenose dolphins from an area.  相似文献   

2.
Spectral parameters were used to discriminate between echolocation clicks produced by three dolphin species at Palmyra Atoll: melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus) and Gray's spinner dolphins (Stenella longirostris longirostris). Single species acoustic behavior during daytime observations was recorded with a towed hydrophone array sampling at 192 and 480 kHz. Additionally, an autonomous, bottom moored High-frequency Acoustic Recording Package (HARP) collected acoustic data with a sampling rate of 200 kHz. Melon-headed whale echolocation clicks had the lowest peak and center frequencies, spinner dolphins had the highest frequencies and bottlenose dolphins were nested in between these two species. Frequency differences were significant. Temporal parameters were not well suited for classification. Feature differences were enhanced by reducing variability within a set of single clicks by calculating mean spectra for groups of clicks. Median peak frequencies of averaged clicks (group size 50) of melon-headed whales ranged between 24.4 and 29.7 kHz, of bottlenose dolphins between 26.7 and 36.7 kHz, and of spinner dolphins between 33.8 and 36.0 kHz. Discriminant function analysis showed the ability to correctly discriminate between 93% of melon-headed whales, 75% of spinner dolphins and 54% of bottlenose dolphins.  相似文献   

3.
The spectral and temporal properties of echolocation clicks and the use of clicks for species classification are investigated for five species of free-ranging dolphins found offshore of southern California: short-beaked common (Delphinus delphis), long-beaked common (D. capensis), Risso's (Grampus griseus), Pacific white-sided (Lagenorhynchus obliquidens), and bottlenose (Tursiops truncatus) dolphins. Spectral properties are compared among the five species and unique spectral peak and notch patterns are described for two species. The spectral peak mean values from Pacific white-sided dolphin clicks are 22.2, 26.6, 33.7, and 37.3 kHz and from Risso's dolphins are 22.4, 25.5, 30.5, and 38.8 kHz. The spectral notch mean values from Pacific white-sided dolphin clicks are 19.0, 24.5, and 29.7 kHz and from Risso's dolphins are 19.6, 27.7, and 35.9 kHz. Analysis of variance analyses indicate that spectral peaks and notches within the frequency band 24-35 kHz are distinct between the two species and exhibit low variation within each species. Post hoc tests divide Pacific white-sided dolphin recordings into two distinct subsets containing different click types, which are hypothesized to represent the different populations that occur within the region. Bottlenose and common dolphin clicks do not show consistent patterns of spectral peaks or notches within the frequency band examined (1-100 kHz).  相似文献   

4.
Dolphins routinely use sound for social purposes, foraging and navigating. These sounds are most commonly classified as whistles (tonal, frequency modulated, typical frequencies 5-10 kHz) or clicks (impulsed and mostly ultrasonic). However, some low frequency sounds have been documented in several species of dolphins. Low frequency sounds produced by bottlenose dolphins (Tursiops truncatus) were recorded in three locations along the Gulf of Mexico. Sounds were characterized as being tonal with low peak frequencies (mean?=?990 Hz), short duration (mean?=?0.069 s), highly harmonic, and being produced in trains. Sound duration, peak frequency and number of sounds in trains were not significantly different between Mississippi and the two West Florida sites, however, the time interval between sounds within trains in West Florida was significantly shorter than in Mississippi (t?=?-3.001, p?=?0.011). The sounds were significantly correlated with groups engaging in social activity (F=8.323, p=0.005). The peak frequencies of these sounds were below what is normally thought of as the range of good hearing in bottlenose dolphins, and are likely subject to masking by boat noise.  相似文献   

5.
Recordings were made from white-beaked dolphins in Icelandic waters using a four-hydrophone array in a star configuration. The acoustic signals were amplified and sampled to a hard disk at a rate of 800 kHz per channel. The 3 and 10 dB beamwidths were calculated to be 8 degrees and 10 degrees, respectively, indicating a narrower transmission beam for white-beaked dolphins than that reported for bottlenose dolphins (Tursiops truncatus). The beamwidth was more similar to that found for belugas (Delphinapterus lucas). The measured beam pattern included large side lobes, perhaps due to the inclusion of off-axis clicks, even after applying several criteria to select only on-axis clicks. The directivity index was calculated to be 18 dB when using all data for angles from 0 degrees-50 degrees. The calculated sound radiation from a circular piston with a radius of 6 cm driven by a white-beaked dolphin click had a beam pattern very similar to the measured beam pattern for the main transmission lobe of the white-beaked dolphin. The directivity index was 29 dB. This is the first attempt to estimate the directionality index of dolphins in the field.  相似文献   

6.
Auditory filter shapes were estimated in two bottlenose dolphins (Tursiops truncatus) and one white whale (Delphinapterus leucas) using a behavioral response paradigm and notched noise. Masked thresholds were measured at 20 and 30 kHz. Masking noise was centered at the test tone and had a bandwidth of 1.5 times the tone frequency. Half-notch width to center frequency ratios were 0, 0.125, 0.25, 0.375, and 0.5. Noise spectral density levels were 90 and 105 dB re: 1 microPa2/Hz. Filter shapes were approximated using a roex(p,r) function; the parameters p and r were found by fitting the integral of the roex(p,r) function to the measured threshold data. Mean equivalent rectangular bandwidths (ERBs) calculated from the filter shapes were 11.8 and 17.1% of the center frequency at 20 and 30 kHz, respectively, for the dolphins and 9.1 and 15.3% of the center frequency at 20 and 30 kHz, respectively, for the white whale. Filter shapes were broader at 30 kHz and 105 dB re: 1 microPa2/Hz masking noise. The results are in general agreement with previous estimates of ERBs in Tursiops obtained with a behavioral response paradigm.  相似文献   

7.
将20 kHz连续声信号作为刺激信号,测试了厦门某海湾圈养的两只瓶鼻海豚对该信号的行为变化。通过对比信号发射期与间歇期海豚相对声源的水面距离、露出水面的次数以及水下发出的click定位声信号的数目等变化,判断发射信号对海豚行为的影响。给出了瓶鼻海豚对测试信号产生躲避行为的声压级门限(154±2 dB re 1μPa,rms),并与鼠海豚的躲避声压门限级进行了对比。结果表明:信号发射期,瓶鼻海豚移离了声源位置,增加了露出水面的次数,水下发出click声信号的次数明显减少。因此,瓶鼻海豚对20kHz连续信号产生了行为改变。   相似文献   

8.
The biosonar pulses from free-ranging northern bottlenose whales (Hyperoodon ampullatus) were recorded with a linear hydrophone array. Signals fulfilling criteria for being recorded close to the acoustic axis of the animal (a total of 10 clicks) had a frequency upsweep from 20 to 55 kHz and durations of 207 to 377 μs (measured as the time interval containing 95% of the signal energy). The source level of these signals, denoted pulses, was 175-202 dB re 1 μPa rms at 1 m. The pulses had a directionality index of at least 18 dB. Interpulse intervals ranged from 73 to 949 ms (N?=?856). Signals of higher repetition rates had interclick intervals of 5.8-13.1 ms (two sequences, made up of 59 and 410 clicks, respectively). These signals, denoted clicks, had a shorter duration (43-200 μs) and did not have the frequency upsweep characterizing the pulses of low repetition rates. The data show that the northern bottlenose whale emits signals similar to three other species of beaked whale. These signals are distinct from the three other types of biosonar signals of toothed whales. It remains unclear why the signals show this grouping, and what consequences it has on echolocation performance.  相似文献   

9.
Field recordings of echolocation signals produced by Heaviside's dolphins (Cephalorhynchus heavisidii) were made off the coast of South Africa using a hydrophone array system. The system consisted of three hydrophones and an A-tag (miniature stereo acoustic data-logger). The mean centroid frequency was 125 kHz, with a -3 dB bandwidth of 15 kHz and -10 dB duration of 74 μs. The mean back-calculated apparent source level was 173 dB re 1 μPa(p.-p.). These characteristics are very similar to those found in other Cephalorhynchus species, and such narrow-band high-frequency echolocation clicks appear to be a defining characteristic of the Cephalorhynchus genus. Click bursts with very short inter-click intervals (up to 2 ms) were also recorded, which produced the "cry" sound reported in other Cephalorhynchus species. Since inter-click intervals correlated positively to click duration and negatively to bandwidth, Heaviside's dolphins may adjust their click duration and bandwidth based on detection range. The bimodal distribution of the peak frequency and stable bimodal peaks in spectra of individual click suggest a slight asymmetry in the click production mechanism.  相似文献   

10.
Devices known as jawphones have previously been used to measure interaural time and intensity discrimination in dolphins. This study introduces their use for measuring hearing sensitivity in dolphins. Auditory thresholds were measured behaviorally against natural background noise for two bottlenose dolphins (Tursiops truncatus); a 14-year-old female and a 33-year-old male. Stimuli were delivered to each ear independently by placing jawphones directly over the pan bone of the dolphin's lower jaw, the assumed site of best reception. The shape of the female dolphin's auditory functions, including comparison measurements made in the free field, favorably matches that of the accepted standard audiogram for the species. Thresholds previously measured for the male dolphin at 26 years of age indicated a sensitivity difference between the ears of 2-3 dB between 4-10 kHz, which was considered unremarkable at the time. Thresholds for the male dolphin reported in this study suggest a high-frequency loss compared to the standard audiogram. Both of the male's ears have lost sensitivity to frequencies above 55 kHz and the right ear is 16-33 dB less sensitive than the left ear over the 10-40 kHz range, suggesting that males of the species may lose sensitivity as a function of age. The results of this study support the use of jawphones for the measurement of dolphin auditory sensitivity.  相似文献   

11.
Underwater audiograms are available for only a few odontocete species. A false killer whale (Pseudorca crassidens) was trained at Sea Life Park in Oahu, Hawaii for an underwater hearing test using a go/no-go response paradigm. Over a 6-month period, auditory thresholds from 2-115 kHz were measured using an up/down staircase psychometric technique. The resulting audiogram showed hearing sensitivities below 64 kHz similar to those of belugas (Delphinapterus leucas) and Atlantic bottlenosed dolphins (Tursiops truncatus). Above 64 kHz, this Pseudorca had a rapid decrease in sensitivity of about 150 dB per octave. A similar decrease in sensitivity occurs at 32 kHz in the killer whale, at 50 kHz in the Amazon River dolphin, at 120 kHz in the beluga, at 140 kHz in the bottlenosed dolphin, and at 140 kHz in the harbor porpoise. The most sensitive range of hearing was from 16-64 kHz (a range of 10 dB from the maximum sensitivity). This range corresponds with the peak frequency of echolocation pulses recorded from captive Pseudorca.  相似文献   

12.
Bottlenose dolphins, Tursiops truncatus, exhibit flexible associations in which the compositions of groups change frequently. We investigated the potential distances over which female dolphins and their dependent calves could remain in acoustic contact. We quantified the propagation of sounds in the frequency range of typical dolphin whistles in shallow water areas and channels of Sarasota Bay, Florida. Our results indicated that detection range was noise limited as opposed to being limited by hearing sensitivity. Sounds were attenuated to a greater extent in areas with seagrass than any other habitat. Estimates of active space of whistles showed that in seagrass shallow water areas, low-frequency whistles (7-13 kHz) with a 165 dB source level could be heard by dolphins at 487 m. In shallow areas with a mud bottom, all whistle frequency components of the same whistle could be heard by dolphins travel up to 2 km. In channels, high-frequency whistles (13-19 kHz) could be detectable potentially over a much longer distance (> 20 km). Our findings indicate that the communication range of social sounds likely exceeds the mean separation distances between females and their calves. Ecological pressures might play an important role in determining the separation distances within communication range.  相似文献   

13.
Bottlenose dolphins (Tursiops truncatus) have an acute ability to use target echoes to judge attributes such as size, shape, and material composition. Most target recognition studies have focused on features associated with individual echoes as opposed to information conveyed across echo sequences (feature envelope of the multi-echo train). One feature of aspect-dependent targets is an amplitude modulation (AM) across the return echoes in the echo train created by relative movement of the target and dolphin. The current study examined whether dolphins could discriminate targets with different AM envelopes. "Electronic echoes" triggered by a dolphin's outgoing echolocation clicks were manipulated to create sinusoidal envelopes with varying AM rate and depth. Echo trains were equated for energy, requiring the dolphin to extract and retain information from multiple echoes in order to detect and report the presence of AM. The dolphin discriminated amplitude-modulated echo trains from those that were not modulated. AM depth thresholds were approximately 0.8 dB, similar to other published amplitude limens. Decreasing the rate of modulation from approximately 16 to 2 cycles per second did not affect the dolphin's AM depth sensitivity. The results support multiple-echo processing in bottlenose dolphin echolocation. This capability provides additional theoretical justification for exploring synthetic aperture sonar concepts in models of animal echolocation that potentially support theories postulating formation of images as an ultimate means for target identification.  相似文献   

14.
This study demonstrated the ability of a false killer whale (Pseudorca crassidens) to discriminate between two targets and investigated the parameters of the whale's emitted signals for changes related to test conditions. Target detection performance comparable to the bottlenose dolphin's (Tursiops truncatus) has previously been reported for echolocating false killer whales. No other echolocation capabilities have been reported. A false killer whale, naive to conditioned echolocation tasks, was initially trained to detect a cylinder in a "go/no-go" procedure over ranges of 3 to 8 m. The transition from a detection task to a discrimination task was readily achieved by introducing a spherical comparison target. Finally, the cylinder was successfully compared to spheres of two different sizes and target strengths. Multivariate analyses were used to evaluate the parameters of emitted signals. Duncan's multiple range tests showed significant decreases (df = 185, p less than 0.05) in both source level and bandwidth in the transition from detection to discrimination. Analysis of variance revealed a significant decrease in the number of clicks over test conditions [F(5.26) = 5.23, p less than 0.0001]. These data suggest that the whale relied on cues relevant to target shape as well as target strength, that changes in source level and bandwidth were task-related, that the decrease in clicks was associated with learning experience, and that Pseudorca's ability to discriminate shapes using echolocation may be comparable to that of Tursiops truncatus.  相似文献   

15.
The use of remote autonomous passive acoustic recorders (PAR) to determine the distribution of dolphins at a given locations has become very popular. Some investigators are using echolocation clicks to gather information on the presence of dolphins and to identify species. However, in all of these cases, the PAR probably recorded mainly off-axis clicks, even some from behind the animals. Yet there is a very poor understanding of the beam pattern and the click waveform and spectrum from different azimuths around the animal's body. The beam pattern completely around an echo locating dolphin was measured at 16 different but equally spaced angles in the horizontal plane using an 8-hydrophone array in sequence. Eight channels of data were digitized simultaneously at a sampling rate of 500 kHz. The resulting beam patterns in both planes showed a continuous drop off in sound pressure with azimuth around the animal and reached levels below -50 dB relative to the signal recorded on the beam axis. The signals began to break up into two components at angles greater than ± 45° in the horizontal plane. The center frequency dropped off from its maximum at 0° in a non-uniform matter.  相似文献   

16.
A previous comparative analysis of normalized click amplitude spectra from a Tursiops truncatus has shown that those frequencies with the lowest click-to-click variability in spectral content were the frequencies the animal paid attention to during target discrimination tasks. In that case, the dolphin only paid attention to the frequency range between 29-42 kHz which had a significantly higher degree of consistency in spectral content than frequencies above 42 kHz. Here it is shown that despite their morphological and behavioral differences, this same pattern of consistency was used by a Pseudorca crassidens performing a similar discrimination task. This comparison between species provides a foundation for using spectral level variability to determine the frequencies most important for echolocation in rare species and non-captive animals. Such results provide key information for successful management.  相似文献   

17.
Franciscana dolphins are small odontocetes hard to study in the field. In particular, little is known on their echolocation behavior in the wild. In this study we recorded 357 min and analyzed 1019 echolocation signals in the Rio Negro Estuary, Argentina. The clicks had a peak frequency at 139 kHz, and a bandwidth of 19 kHz, ranging from 130 to 149 kHz. This is the first study describing echolocation signals of franciscana dolphins in the wild, showing the presence of narrow-band high frequency signals in these dolphins. Whether they use other vocalizations to communicate or not remains uncertain.  相似文献   

18.
Echolocating dolphins emit trains of clicks and receive echoes from ocean targets. They often emit each successive ranging click about 20 ms after arrival of the target echo. In echolocation, decisions must be made about the target--fish or fowl, predator or food. In the first test of dolphin auditory decision speed, three bottlenose dolphins (Tursiops truncatus) chose whistle or pulse burst responses to different auditory stimuli randomly presented without warning in rapid succession under computer control. The animals were trained to hold pressure catheters in the nasal cavity so that pressure increases required for sound production could be used to split response time (RT) into neural time and movement time. Mean RT in the youngest and fastest dolphin ranged from 175 to 213 ms when responding to tones and from 213 to 275 ms responding to pulse trains. The fastest neural times and movement times were around 60 ms. The results suggest that echolocating dolphins tune to a rhythm so that succeeding pulses in a train are produced about 20 ms over target round-trip travel time. The dolphin nervous system has evolved for rapid processing of acoustic stimuli to accommodate for the more rapid sound speed in water compared to air.  相似文献   

19.
The source characteristics of biosonar signals from sympatric killer whales and long-finned pilot whales in a Norwegian fjord were compared. A total of 137 pilot whale and more than 2000 killer whale echolocation clicks were recorded using a linear four-hydrophone array. Of these, 20 pilot whale clicks and 28 killer whale clicks were categorized as being recorded on-axis. The clicks of pilot whales had a mean apparent source level of 196 dB re 1 μPa pp and those of killer whales 203 dB re 1 μPa pp. The duration of pilot whale clicks was significantly shorter (23 μs, S.E.=1.3) and the centroid frequency significantly higher (55 kHz, S.E.=2.1) than killer whale clicks (duration: 41 μs, S.E.=2.6; centroid frequency: 32 kHz, S.E.=1.5). The rate of increase in the accumulated energy as a function of time also differed between clicks from the two species. The differences in duration, frequency, and energy distribution may have a potential to allow for the distinction between pilot and killer whale clicks when using automated detection routines for acoustic monitoring.  相似文献   

20.
A two-dimensional array of 16 hydrophones was created to map the spatial distribution of different frequencies within the echolocation beam of a Tursiops truncatus and a Pseudorca crassidens. It was previously shown that both the Tursiops and Pseudorca only paid attention to frequencies between 29 and 42 kHz while echolocating. Both individuals tightly focused the 30?kHz frequency and the spatial location of the focus was consistently pointed toward the target. At 50?kHz the beam was less focused and less precisely pointed at the target. At 100?kHz the focus was often completely lost and was not pointed at the target. This indicates that these individuals actively focused the beam toward the target only in the frequency range they paid attention to. Frequencies outside this range were left unfocused and undirected. This focusing was probably achieved through sensorimotor control of the melon morphology and nasal air sacs. This indicates that both morphologically different species can control the spatial distribution of different frequency ranges within the echolocation beam to create consistent ensonation of desired targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号