首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The changes in in situ Raman spectra of ice in aqueous KCl solution have been measured as a function of pressure at liquid nitrogen temperature (77 K). The ice that is formed abruptly transforms to a crystalline phase at 800 MPa. It has a spectrum close to that of ice VII′ to which high density amorphous (hda) ice transforms at about 4 GPa. This behavior contrasts with that of the ice in aqueous LiCl solution, which transforms to an amorphous phase at 500 MPa, as in the case of pressure-induced amorphization of ice Ih to hda.  相似文献   

2.
Transformations of water's high density amorph (HDA) to low density amorph (LDA) and of LDA's to cubic ice (Ic) have been studied by in situ thermal conductivity kappa measurements at high pressures. The HDA to LDA transformation is unobservable at p of 0.07 GPa, indicating that, for a fixed heating rate, an increase in pressure increases the temperature of HDA to LDA transformation and decreases that of LDA to ice Ic, causing thereby the two transformations to merge, and HDA appears to convert directly to ice Ic. Thus either LDA forms but converts extremely rapidly to ice Ic, or LDA does not form. At a fixed p and T, in the range of pressure amorphization of hexagonal ice, kappa continues to decrease with time. Therefore, the amorphization of ice Ih is kinetically controlled. When HDA at 1 GPa was heated from 130 to 157 K and densified to very HDA, its kappa increased by 3%. Our findings and a scrutiny of earlier reports show that a reversible transition between HDA and LDA does not occur at approximately 135 K and approximately 0.2 GPa. Since there is no unique HDA, it is difficult to justify the conjecture for a second critical point for water.  相似文献   

3.
The exact nature of the relationship between high-density (HDA) and very-high-density (VHDA) amorphous ice is unknown at present. Here we review the relation between HDA and VHDA, concentrating on experimental aspects and discuss these with respect to the relation between low-density amorphous ice (LDA) and HDA. On compressing LDA at 125 K up to 1.5 GPa, two distinct density steps are observable in the pressure-density curves which correspond to the LDA --> HDA and HDA --> VHDA conversion. This stepwise formation process LDA --> HDA --> VHDA at 125 K is the first unambiguous observation of a stepwise amorphous-amorphous-amorphous transformation sequence. Density values of amorphous ice obtained in situ between 0.3 and 1.9 GPa on isobaric heating up to the temperatures of crystallization show a pronounced change of slope at ca. 0.8 GPa which could indicate formation of a distinct phase. We infer that the relation between HDA and VHDA is very similar to that between LDA and HDA except for a higher activation barrier between the former. We further discuss the two options of thermodynamic phase transition versus kinetic densification for the HDA --> VHDA conversion.  相似文献   

4.
The low-temperature limiting value of the Grüneisen parameter for low-frequency phonons and the density dependence of the thermal conductivity (Bridgman parameter) of low-density amorphous (LDA) ice, high-density amorphous (HDA) ice, hexagonal ice Ih, and cubic ice Ic were calculated from high-pressure sound velocity and thermal conductivity measurements, yielding negative values for all states except HDA ice. LDA ice is the first amorphous state to exhibit a negative Bridgman parameter, and negative Grüneisen parameters are relatively unusual. Since Ih, Ic, and LDA ice all transform to HDA upon pressurization at low temperatures and share the unusual feature of negative Grüneisen parameters, this seems to be a prerequisite for pressure induced amorphization. We estimate that the Grüneisen parameter increases at the ice Ih to XI transition, and may become positive in ice XI, which indicates that proton-ordered ice XI does not amorphize like ice Ih on pressurization.  相似文献   

5.
Molecular dynamics simulations of metastable ice VII and cubic ice Ic are carried out in order to examine (1) the ability of commonly used water interaction potentials to reproduce the properties of ices, and (2) the possibility of generating low-density amorphous (LDA) structures by heating ice VII, which is known to transform to LDA at approximately 135 K at normal pressure [S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday, and W. G. Marshall, Nature (London) 398, 681 (1999)]. We test four simple empirical interaction potentials of water: TIP4P [W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983)], SPC/E [H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. B 91, 6269 (1987)], TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)], and ST2 [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)]. We have found that TIP5P ice VII melts at 210 K, TIP4P at 90 K, and SPC/E at 70 K. Only TIP5P water after transition has a structure similar to that of LDA. TIP4P and SPC/E have almost identical structures, dissimilar to any known water or amorphous phases, but upon heating both slowly evolve towards LDA-like structure. ST2 ice VII is remarkably stable up to 430 K. TIP4P and SPC/E predict correctly the cubic ice collapse into a high-density amorphous ice (HDA) at approximately 1 GPa whereas TIP5P remains stable up to approximately 5 GPa. The densities of the simulated ice phases differ significantly, depending on the potential used, and are generally higher than experimental values. The importance of proper treatment of long-range electrostatic interactions is also discussed.  相似文献   

6.
The glass transition behaviors of amorphous ice with different thicknesses are studied by determining the heat capacity of low-density amorphous ice without crystallization using first principle molecular dynamics (FP-MD) and classical MD methods. The behaviors are also studied by analyzing hydrogen-bond network, the radial distribution functions, and relationship between hydrogen bond and electronic structures. It is found that the glass transition temperature (T(g)) in the range of 90 K < T < 100 K for 4 nm amorphous ice film by FP-MD method, and 120 K < T(g) < 130 K for 8 nm amorphous ice film by MD method. Meanwhile, T(g) decreases with the decreasing thickness of amorphous ice film, which is also validated by the theoretical model.  相似文献   

7.
An understanding of water's anomalies is closely linked to an understanding of the phase diagram of water's metastable noncrystalline states. Despite the considerable effort, such an understanding has remained elusive and many puzzles regarding phase transitions in supercooled liquid water and their possible amorphous proxies at low temperatures remain. Here, decompression of very high density amorphous ice (VHDA) from 1.1 to 0.02 GPa at 140 K is studied by means of dilatometry and powder x-ray diffraction of quench-recovered states. It is shown that the three amorphous states of ice are reversibly connected to each other, i.e., LDA<-->e-HDA<-->VHDA. However, while the downstroke VHDA-->e-HDA transition takes place in the pressure range of 0.06 GPaLDA transition takes place quasi-discontinuously at p approximately 0.06 GPa. That is, two amorphous-amorphous transitions of a distinct nature are observed for the first time in a one-component system-a first-order-like transition (e-HDA-->LDA) and a transition which is not first-order like but possibly of higher order (VHDA-->e-HDA). VHDA and e-HDA are established as the most stable and limiting states in the course of the transition. We interpret this as evidence disfavoring the hypothesis of multiple first-order liquid-liquid transitions (and the option of a third critical point), but favoring a single first-order liquid-liquid transition (and the option of a second critical point).  相似文献   

8.
Model structures have been created for ice Ih and for low density (LDA), high density (HDA), and very high density (VHDA) amorphous ices using the procedure for determining the equilibrium configurations of molecules in amorphous phases. The chemical potentials of these ices were calculated for wide ranges of temperature and pressure. The curves of equilibrium phase transitions have been plotted. It is shown that at high pressures, VHDA ice is more stable than Ih, while HDA ice is metastable with respect to VHDA over the whole range of pressures and temperatures. These calculations provide an explanation to the experimentally observed transition of HDA into a higher density phase (VHDA) during isobaric heating.  相似文献   

9.
Temperature-dependent deuteron spin lattice relaxation times T(1) have been obtained from water in its three amorphous states at ambient pressure: low density amorphous (LDA), high density amorphous (HDA), and very high density amorphous (VHDA). It is found that in all of these states the magnetization recovery is essentially monoexponential and that T(1) of LDA is significantly longer than that of the higher density forms. Thus, T(1) can be used as a monitor parameter to study the kinetics of the transitions from HDA to LDA and from VHDA to LDA. During the transformation of VHDA to LDA an intermediate state is formed, which, according to its T(1) at low temperature, is clearly determined to be HDA-like. However, and most significantly, the transition from VHDA to this HDA-like state and further on to LDA occurs at temperatures significantly above the kinetic stability limit of native HDA produced at 77 K. These findings contribute to the current discussion on the nature of HDA and VHDA by strengthening the view that the annealing of VHDA at ambient pressure produces a relaxed HDA-like state.  相似文献   

10.
Electronic structures of hexagonal ice (ice Ih), high-density amorphous ice (HDA), and very high-density amorphous ice (VHDA) are investigated using ab initio density functional theory (DFT) at 77 K under a pressure of 0.1 MPa, focusing on band structure, density of states (DOS), partial density of states (PDOS), and electron density. It is found that the integration intensity of the O-2p bonding band in HDA is 1.53 eV wider than that in the VHDA. Because more 2p electrons in HDA participate the 2p-1s hybridization of O-H. The classical molecular dynamics (MD) method has further been carried out to analyze the hydrogen bond network of HDA and VHDA with larger numbers of water molecules under the same temperature, pressure, and boundary conditions used as those during the DFT calculation. MD results show that there exists some water molecules with five hydrogen bonds in both HDA (4.1 +/- 0.1%) and VHDA (2.8 +/- 0.1%), as compared with the LDA, being consistent with the integration intensity results of PDOS. This result can be used to interpret the physical nature of the similar transition temperature of HDA and VHDA to LDA with different heating rates.  相似文献   

11.
With the purpose of clarifying a number of points raised in the experimental literature, we investigate by molecular dynamics simulation the thermodynamics, the structure and the vibrational properties of vapor-deposited amorphous ice (ASW) as well as the phase transformations experienced by crystalline and vitreous ice under ion bombardment. Concerning ASW, we have shown that by changing the conditions of the deposition process, it is possible to form either a nonmicroporous amorphous deposit whose density (approximately 1.0 g/cm3) is essentially invariant with the temperature of deposition, or a microporous sample whose density varies drastically upon temperature annealing. We find that ASW is energetically different from glassy water except at the glass transition temperature and above. Moreover, the molecular dynamics simulation shows no evidence for the formation of a high-density phase when depositing water molecules at very low temperature. In order to model the processing of interstellar ices by cosmic ray protons and heavy ions coming from the magnetospheric radiation environment around the giant planets, we bombarded samples of vitreous ice and cubic ice with 35 eV water molecules. After irradiation the recovered samples were found to be densified, the lower the temperature, the higher the density of the recovered sample. The analysis of the structure and vibrational properties of this new high-density phase of amorphous ice shows a close relationship with those of high-density amorphous ice obtained by pressure-induced amorphization.  相似文献   

12.
We report a study of aqueous solutions of poly(vinylalcohol) and its hydrogel by thermal conductivity, κ, and specific heat measurements. In particular, we investigate (i) the changes in the solution and the hydrogel at 0.1 MPa observed in the 350-90 K range and of the frozen hydrogel at 130 K observed in the range from 0.1 MPa to 1.3 GPa, and (ii) the nature of the pressure collapse of ice in the frozen hydrogel and kinetic unfreezing on heating of its high density water at 1 GPa. The water component of the polymer solution on cooling either first phase separates and then freezes to hexagonal ice or freezes without phase separation and the dispersed polymer chains freeze-concentrate in nanoscopic and microscopic regions of the grain boundaries and grain junctions of the ice crystals in the frozen state of water in the hydrogel. The change in κ with temperature at 1 bar is reversible with some hysteresis, but not reversible with pressure after compression to 0.8 GPa at 130 K. At high pressures the crystallized state collapses showing features of κ and specific heat characteristic of formation of high density amorphous solid water. The pressure of structural collapse is 0.08 GPa higher than that of ice at 130 K. The slowly formed collapsed state shows kinetic unfreezing or glass-liquid transition temperature at 140 K for a time scale of 1 s. Comparison with the change in the properties observed for ice shows that κ decreases when the polymer is added.  相似文献   

13.
We report results of molecular dynamics simulations of amorphous ice for pressures up to 22.5 kbar. The high-density amorphous ice (HDA) as prepared by pressure-induced amorphization of I(h) ice at T=80 K is annealed to T=170 K at various pressures to allow for relaxation. Upon increase of pressure, relaxed amorphous ice undergoes a pronounced change of structure, ranging from the low-density amorphous ice at p=0, through a continuum of HDA states to the limiting very high-density amorphous ice (VHDA) regime above 10 kbar. The main part of the overall structural change takes place within the HDA megabasin, which includes a variety of structures with quite different local and medium-range order as well as network topology and spans a broad range of densities. The VHDA represents the limit to densification by adapting the hydrogen-bonded network topology, without creating interpenetrating networks. The connection between structure and metastability of various forms upon decompression and heating is studied and discussed. We also discuss the analogy with amorphous and crystalline silica. Finally, some conclusions concerning the relation between amorphous ice and supercooled water are drawn.  相似文献   

14.
Doped ice V samples made from solutions containing 0.01 M HCl (DCl), HF (DF), or KOH (KOD) in H(2)O (D(2)O) were slow-cooled from 250 to 77 K at 0.5 GPa. The effect of the dopant on the hydrogen disorder --> order transition and formation of hydrogen ordered ice XIII was studied by differential scanning calorimetry (DSC) with samples recovered at 77 K. DSC scans of acid-doped samples are consistent with a reversible ice XIII <--> ice V phase transition at ambient pressure, showing an endothermic peak on heating due to the hydrogen ordered ice XIII --> disordered ice V phase transition, and an exothermic peak on subsequent cooling due to the ice V --> ice XIII phase transition. The equilibrium temperature (T(o)) for the ice V <--> ice XIII phase transition is 112 K for both HCl doped H(2)O and DCl doped D(2)O. From the maximal enthalpy change of 250 J mol(-1) on the ice XIII --> ice V phase transition and T(o) of 112 K, the change in configurational entropy for the ice XIII --> ice V transition is calculated as 2.23 J mol(-1) K(-1) which is 66% of the Pauling entropy. For HCl, the most effective dopant, the influence of HCl concentration on the formation of ice XIII was determined: on decreasing the concentration of HCl from 0.01 to 0.001 M, its effectiveness is only slightly lowered. However, further HCl decrease to 0.0001 M drastically lowered its effectiveness. HF (DF) doping is less effective in inducing formation of ice XIII than HCl (DCl) doping. On heating at a rate of 5 K min(-1), kinetic unfreezing starts in pure ice V at approximately 132 K, whereas in acid doped ice XIII it starts at about 105 K due to acceleration of reorientation of water molecules. KOH doping does not lead to formation of hydrogen ordered ice XIII, a result which is consistent with our powder neutron diffraction study (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758). We further conjecture whether or not ice XIII has a stable region in the water/ice phase diagram, and on a metastable triple point where ice XIII, ice V and ice II are in equilibrium.  相似文献   

15.
In situ high-pressure/low-temperature synchrotron x-ray diffraction and optical Raman spectroscopy were used to examine the structural properties, equation of state, and vibrational dynamics of ice VIII. The x-ray measurements show that the pressure-volume relations remain smooth up to 23 GPa at 80 K. Although there is no evidence for structural changes to at least 14 GPa, the unit-cell axial ratio ca undergoes changes at 10-14 GPa. Raman measurements carried out at 80 K show that the nu(Tz)A(1g)+nuT(x,y)E(g) lattice modes for the Raman spectra of ice VIII in the lower-frequency regions (50-800 cm(-1)) disappear at around 10 GPa, and then a new peak of approximately 150 cm(-1) appears at 14 GPa. The combined data provide evidence for a transition beginning near 10 GPa. The results are consistent with recent synchrotron far-IR measurements and theoretical calculations. The decompressed phase recovered at ambient pressure transforms to low-density amorphous ice when heated to approximately 125 K.  相似文献   

16.
The only published data on the disordered-to-ordered ice III to ice IX transition refers to measurements of di-electric constant. Raman spectra of ice III and ice IX were recorded under a pressure of 0.3 GPa for temperatures in the range 250 to 130 K. They clearly show a transition that is predominantly of the disordered-ordered type. Raman spectra in the frequency range 15–4000 cm?1 will be shown but special attention will be given to two translational lattice modes at about 190 cm?1 and 65.5 cm?1 which show somewhat unusual behaviour. Small discontinuities in the frequency versus temperature plots suggest that there is a small discontinuous decrease in the volume during the ice III to ice IX transition.  相似文献   

17.
Cyanamide (NH(2)CN), an interstellar molecule, is a relevant molecule in prebiotic chemistry, because it can be converted into urea in liquid water. Carbodiimide (HNCNH), the most stable cyanamide isomer, is able to assemble amino acids into peptides. In this work, using FTIR spectroscopy, we show that carbodiimide can be formed from cyanamide at low temperature (10 K), by a photochemical process in argon matrix, in water matrix, or in solid film. We also report experimental evidence about the carbodiimide formation when cyanamide is condensed at low temperature (50-140 K) on an amorphous water ice surface, or when it is trapped in the water ice. The water ice acts as a catalyst. This isomerization reaction occurs at low temperature (T < 100 K), which agrees with those expected in the interstellar clouds composed of dust grains in which water is the most predominant compound. Finally, the hydrolysis reaction of cyanamide or carbodiimide leading to urea or isourea formation is not observed under our experimental conditions.  相似文献   

18.
Experiments are reported which show that currents of low energy ("cold") electrons pass unattenuated through crystalline ice at 135 K for energies between zero and 650 meV, up to the maximum studied film thickness of 430 bilayers, indicating negligible apparent trapping. By contrast, both porous amorphous ice and compact crystalline ice at 40 K show efficient electron trapping. Ice at intermediate temperatures reveals metastable trapping that decays within a few hundred seconds at 110 K. Our results are the first to demonstrate full transmission of cold electrons in high temperature water ice and the phenomenon of temperature-dependent trapping.  相似文献   

19.
The changes in the structure and composition of vapor-deposited ice films irradiated at 20 K with soft x-ray photons (3-900 eV) and their subsequent evolution with temperatures between 20 and 150 K have been investigated by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K edge. We observe the hydroxyl OH, the atomic oxygen O, and the hydroperoxyl HO(2) radicals, as well as the oxygen O(2) and hydrogen peroxide H(2)O(2) molecules in irradiated porous amorphous solid water (p-ASW) and crystalline (I(cryst)) ice films. The evolution of their concentrations with the temperature indicates that HO(2), O(2), and H(2)O(2) result from a simple step reaction fuelled by OH, where O(2) is a product of HO(2) and HO(2) a product of H(2)O(2). The local order of ice is also modified, whatever the initial structure is. The crystalline ice I(cryst) becomes amorphous. The high-density amorphous phase (I(a)h) of ice is observed after irradiation of the p-ASW film, whose initial structure is the normal low-density form of the amorphous ice (I(a)l). The phase I(a)h is thus peculiar to irradiated ice and does not exist in the as-deposited ice films. A new "very high density" amorphous phase-we call I(a)vh-is obtained after warming at 50 K the irradiated p-ASW ice. This phase is stable up to 90 K and partially transforms into crystalline ice at 150 K.  相似文献   

20.
We report in situ density values of amorphous ice obtained between 0.3 and 1.9 GPa and 144 to 183 K. Starting from high-density amorphous ice made by pressure-amorphizing hexagonal ice at 77 K, samples were heated at a constant pressure until crystallization to high-pressure ices occurred. Densities of amorphous ice were calculated from those of high-pressure ice mixtures and the volume change on crystallization. In the density versus pressure plot a pronounced change of slope occurs at approximately 0.8 GPa, with a slope of 0.21 g cm(-3) GPa(-1) below 0.8 GPa and a slope of 0.10 g cm(-3) GPa(-1) above 0.8 GPa. Both X-ray diffractograms and Raman spectra of recovered samples show that major structural changes occur up to approximately 0.8 GPa, developing towards those of very high-density amorphous ice reported by (T. Loerting, C. Salzmann, I. Kohl, E. Mayer and A. Hallbrucker, Phys. Chem. Chem. Phys., 2001, 3, 5355) and that further increase of pressure has only a minor effect. In addition, the effect of annealing temperature (T(A)) at a given pressure on the structural changes was studied by Raman spectra of recovered samples in the coupled O-H and decoupled O-D stretching band region: at 0.5 GPa structural changes are observed between approximately 100-116 K, at 1.17 GPa between approximately 121-130 K. Further increase of T(A) or of annealing time has no effect, thus indicating that the samples are fully relaxed. We conclude that mainly irreversible structural changes between 0.3 to approximately 0.8 GPa lead to the pronounced increase in density, whereas above approximately 0.8 GPa the density increase is dominated to a large extent by reversible elastic compression. These results seem consistent with simulation studies by (R. Martonàk, D. Donadio and M. Parrinello, J. Chem. Phys., 2005, 122, 134501) where substantial reconstruction of the topology of the hydrogen bonded network and changes in the ring statistics from e.g. mainly six-membered to mainly nine-membered rings were observed on pressure increase up to 0.9 GPa and further pressure increase had little effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号