首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In 35 healthy volunteers 79 hydrogen spectra were measured from the parietal lobe, parieto-occipital lobe, frontal lobe, temporal lobe, thalamus and insular region. Voxels were selected with a double spin-echo sequence at TE 71, 135 and 270 ms. The spectra were quantitatively evaluated by fitting a Lorentzian model to the resonances of the creatine pool at 3.02 ppm and the choline pool at 3.22 ppm. No differences were found in the intensities of either metabolite in the 6 investigated regions. Creatine and choline were equally distributed in these regions. The interindividual reproducibility of the spectra decreases with longer echo delays. The coefficients of variation of the areas of creatine and choline corrected for the number of acquisitions and the voxel size are ±13% at TE 71 ms, ±23% at TE 135 ms, ±43% at TE 270 ms. This is caused by an interindividual variation in T2 by ±15%, which affects all resonances of a spectrum. Signal variations from the fit, the Q-factor of the RF-coil loaded with different subjects and variations in the flip angle are less than 10% at each echo delay. The intraindividual variation without repositioning of the subject was better than 10%. Using creatine as an internal reference the ratios of the amplitudes of N-acetyl-aspartate (NAA) at 2.01 ppm and γ-methylene protons of glutamic acid at 2.34 ppm were not specific for special regions of the brain. Only in the temporal lobe the ratio of NAA and creatine was reduced. A mean concentration ratio of 1.7 for NAA and Cre was measured as an average over all subjects and the investigated brain regions with the exception of the temporal lobe. Initial applications of the method to 7 patients with brain tumors are described.  相似文献   

2.
The present study was performed to determine the characteristics of the biochemical metabolites related to gastric cancer using ex vivo (1)H magnetic resonance spectroscopy (MRS), and to assess the clinical usefulness. A total of 35 gastric specimens resected during surgery for gastric cancer were used to compare MR spectra. A 1.5-T (64-MHz) clinical MR imager equipped with facilities for spectroscopy was used to obtain MR spectra from 33 gastric specimens. High-resolution (1)H nuclear magnetic resonance (NMR) spectra of the remains of two specimens were also examined with a 9.4-T (400-MHz) NMR spectrometer. Localized spectroscopic measurements were performed in two layers of gastric tissue, the proper muscle layer and the composite mucosa/submucosa layer. T(2) FSE and 3D SPGR images were used to determine the voxel size and the location for MRS data collection. MR spectra were obtained using the single-voxel PRESS technique with parameters of TR/TE = 2000/30 ms, NA = 256, and voxel size = 3 x 3 x 3 mm(3) (27 microL). Cancerous and noncancerous gastric tissues in the voxel were determined by histopathological analysis. On 9.4-T ex vivo NMR spectroscopy, the following metabolite peaks were found: lipids at 0.9 ppm (CH(3)) and 1.3 ppm (CH(2)); alanine (beta-CH(3)) at 1.58 ppm; N-Acetyl neuraminic acid (NANA: sialic acid) at 2.03 ppm; and glutathione at 2.25 ppm in normal gastric tissue layers. In the 1.5-T MR system, broad and featureless spectral peaks of the various metabolites in normal human gastric tissue were observed at 0.9 ppm, 1.3 ppm, 2.0 ppm, and 2.2 ppm regardless of gastric tissue layer. In specimens (Borrmann type III) with tubular adenocarcinoma, resonance peaks were observed at 1.26 ppm, 1.36 ppm (doublet of lactate), and 3.22 ppm (choline). Cancer lesions showed decreased levels of lipid peaks, showing the significant lactate doublet peaks, and increased intensity of the choline peak as compared with noncancerous gastric tissue. We found that decreased levels of lipids and increases in lactate and choline peaks in gastric tissue were markers for malignancy in gastric lesions. Information provided by ex vivo (1)H MRS, together with the development of in vivo (1)H MRS with high field strength and high resolution, may be very useful for the diagnosis of gastric cancer in clinical situation.  相似文献   

3.
We have compared and analyzed the value of in vivo proton MR spectroscopy (PMRS) and T1 weighted magnetization transfer (MT) MR imaging in tissue characterization of brain tuberculomas. We studied 33 cases of proven intracranial tuberculomas with in vivo PMRS and T1 weighted MT MR imaging. MT ratios from the rim and core of the tuberculomas were calculated and compared with metabolites seen on PMRS. Final diagnosis of tuberculoma was based on histopathology (n = 26) and/or associated tuberculous meningitis (n = 7) in all the cases. Out of the 33 patients who underwent both PMRS and T1 weighted MT MR imaging, spectroscopy showed only lipids at 0.9 ppm, 1.3 ppm, 2.0 ppm, and 2.80 ppm in 26 cases while lipids at 0.9 ppm, 1.3 ppm, 2.0 ppm and 2.80 ppm along with choline at 3.22 ppm was seen in remaining 7 patients. MT ratios from the core or solid necrosis varied from 21-29% while from the rim or cellular region varied from 16-24%. MT ratios from all the 33 lesions were consistent with tuberculomas while PMRS showed choline along with lipids in 7 predominantly cellular lesions simulating a neoplasm. We conclude that T1 weighted MT MR imaging appears to be more consistent in the tissue characterization of brain tuberculomas.  相似文献   

4.

Introduction

To diagnose rectal cancer and monitor treatment response after preoperative concurrent chemoradiotherapy (CCRT) in rectal cancer patients using proton-1 magnetic resonance spectroscopy (1H-MRS).

Materials and Methods

We enrolled 134 rectal cancer patients before treatment, of whom 34 underwent preoperative CCRT and follow-up MR spectroscopy before surgery. 1H-MRS was performed using a six-channel phased-array coil at 3.0 T. We evaluated the presence of a choline peak at 3.2 ppm, and lipid peaks at 0.9 and 1.3 ppm, and glutamine and glutamate peaks at 2.1-2.3 and 2.7 ppm seen at two TEs (40 and 135 ms). We divided MR spectra patterns into two groups (A and B).

Results

A choline peak at 3.2 ppm seen in both TEs was characteristic for rectal cancer before treatment. Of 103 patients, 55 (53%) showed an elevated choline peak before treatment (type A). Type A spectra were seen in 68% of patients (23/34) before preoperative CCRT. After CCRT, the choline peak disappeared, resulting in only the lipid peak at 1.3 ppm (type B) in 97% of patients (33/34).

Discussion

We optimized a localized in vivo1H-MRS method for detection of rectal adenocarcinoma and monitoring treatment response after preoperative CCRT. The method appears to be a promising and feasible noninvasive modality.  相似文献   

5.
Automated analysis of 1.5 Tesla proton mass MR spectra using the LCModel program with basis sets obtained at other sites is expected to become more widespread, as such basis sets are now generally available. A calibration procedure to estimate absolute concentrations with such imported basis sets is suggested and the implications for differential T2 attenuation are discussed. Based on STEAM localized spectra from parietal gray (n = 51) and white matter (n = 43), of which 28 (18 rsp) were quantified, the evaluation of 30 ms echo time (TE) spectra was validated against published results that were obtained at 2 Tesla and 20 ms TE. Good agreement for both absolute concentrations and metabolite ratios confirmed the usefulness of LCModel analysis with an imported basis set. However, in white matter, glutamine tended to be overestimated, and was assigned either to signal-to-noise depending baseline effects or the use of choline. Mutual interdependence of metabolites inherent to LCModel analysis is discussed in detail.  相似文献   

6.
Visualization of short echo time (TE) metabolites in prostate magnetic resonance spectroscopic imaging is difficult due to lipid contamination and pulse timing constraints. In this work, we present a modified pulse sequence to permit short echo time (TE=40ms) acquisitions with reduced lipid contamination for the detection of short TE metabolites. The modified pulse sequence employs the conformal voxel MRS (CV-MRS) technique, which automatically optimizes the placement of spatial saturation planes to adapt the excitation volume to the shape of the prostate, thus reducing lipid contamination in prostate magnetic resonance spectroscopic imaging (MRSI). Metabolites were measured and assessed using a modified version of LCModel for analysis of in vivo prostate spectra. We demonstrate the feasibility of acquiring high quality spectra at short TEs, and show the measurement of short TE metabolites, myo-inositol, scyllo-inositol, taurine and glutamine/glutamate for both single and multi-voxel acquisitions. In single voxels experiments, the reduction in TE resulted in 57% improvement in the signal-to-noise ratio (SNR). Additional 3D MRSI experiments comparing short (TE=40 ms), and long (TE=130 ms) TE acquisitions revealed a 35% improvement in the number of adequately fitted metabolite peaks (775 voxels over all subjects). This resulted in a 42 ± 24% relative improvement in the number of voxels with detectable citrate that were well-fitted using LCmodel. In this study, we demonstrate that high quality prostate spectra can be obtained by reducing the TE to 40 ms to detect short T2 metabolites, while maintaining positive signal intensity of the spin-coupled citrate multiplet and managing lipid suppression.  相似文献   

7.
PURPOSE: Central neurocytomas (CNCs) are rare neuronal tumors that have a favorable prognosis and lower rate of recurrence compared with other intraventricular neoplasms. Although it may be difficult to distinguish CNC on conventional neuroimaging, typical MR spectroscopy (MRS) features have been reported. We describe the MRI and MRS features of CNC. MATERIALS AND METHODS: Eight patients with CNC were reviewed. Three patients underwent presurgical in vivo single-voxel MRS at short echo time (TE, 35 ms) and multi-voxel MR spectroscopic imaging at long TE (144 ms). The surgically resected tumor specimen of one of these patients was also studied ex vivo using high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance. RESULTS: All eight tumors were located in the lateral ventricles. In six patients, CNC extended into the third ventricle, and in two patients the tumor showed further contiguous intraventricular dissemination into the fourth ventricle. In all three patients who underwent MRS, a characteristic metabolite peak was detected at 3.55 parts per million (ppm) at both long and short TE. HRMAS confirmed the presence of elevated glycine (Gly) at 3.55 ppm, without increase in the concentration of myo-inositol found at the same chemical shift. Elevated choline (at 3.2 ppm) was also seen in all three patients. CONCLUSION: On MRS, CNCs have a typical appearance with a metabolite peak at 3.55 ppm due to increased Gly, and this feature may be helpful in presurgical diagnosis. Although they are rare benign intraventricular tumors, in atypical cases, CNCs can show extensive intraventricular dissemination into the fourth ventricle.  相似文献   

8.
A new approach is introduced to simultaneously detect resolved glutamate (Glu), glutamine (Gln), and gamma-aminobutyric acid (GABA) using a standard STEAM localization pulse sequence with the optimized sequence timing parameters. This approach exploits the dependence of the STEAM spectra of the strongly coupled spin systems of Glu, Gln, and GABA on the echo time TE and the mixing time TM at 4 T to find an optimized sequence parameter set, i.e., {TE, TM}, where the outer-wings of the Glu C4 multiplet resonances around 2.35 ppm, the Gln C4 multiplet resonances around 2.45 ppm, and the GABA C2 multiplet resonance around 2.28 ppm are significantly suppressed and the three resonances become virtual singlets simultaneously and thus resolved. Spectral simulation and optimization were conducted to find the optimized sequence parameters, and phantom and in vivo experiments (on normal human brains, one patient with traumatic brain injury, and one patient with brain tumor) were carried out for verification. The results have demonstrated that the Gln, Glu, and GABA signals at 2.2-2.5 ppm can be well resolved using a standard STEAM sequence with the optimized sequence timing parameters around {82 ms,48 ms} at 4 T, while the other main metabolites, such as N-acetyl aspartate (NAA), choline (tCho), and creatine (tCr), are still preserved in the same spectrum. The technique can be easily implemented and should prove to be a useful tool for the basic and clinical studies associated with metabolism of Glu, Gln, and/or GABA.  相似文献   

9.
Creatine is a central energy metabolite whose N-CH3 group can be detected with 1H MR spectroscopy (1H MRS) with relatively high sensitivity. Prior studies suggest that muscle fiber orientation can influence the appearance of other resonances attributed to total creatine (CR). Our purpose was to determine whether muscle fiber orientation affects muscle CR concentration quantification by 1H MRS with the commonly used N-CH3 resonance at 3.0 ppm. Skeletal muscle CR was quantified with water-referenced 1H MRS in normal subjects with different forearm muscle orientations relative to the static magnetic field at 1.5T. There were no significant differences in mean total [CR] in two different series of experiments separately including two orthogonal orientations and four orientations (0 degrees, 30 degrees, 60 degrees, 90 degrees) of the forearm relative to the static field using either short (TE = 15 ms) or long (TE = 100 ms) echo times for voxels containing or centered on the same tissues. Subtle differences in CR line-width and T2 correction factors were observed with orientation. These observations are consistent with the primary hypothesis that careful water-referenced [CR] quantification, accounting for T2 effects and using the N-CH3 peak at 3.0ppm, is not affected by muscle orientation.  相似文献   

10.
Our purpose was to investigate, by magnetic resonance (MR) spectroscopy, the metabolite changes in the brains of subjects in the shoemaking industry who had been chronically exposed to organic solvents. A total of 49 male subjects and 30 age-matched healthy volunteers underwent detailed neurological and psychiatric examinations. All subjects had long-echo [repetition time (TR) 2000 ms, echo time (TE) 136 ms] single-voxel MR spectroscopy. Voxels (15 x 15 x 15 mm(3)) were placed in the parietal white matter, thalamus, and basal ganglia. N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr ratios were calculated. There was no significant difference between the study subjects and the control group in NAA/Cr ratios obtained from thalamus, basal ganglia, and parietal white matter. Cho/Cr ratios in thalamus, basal ganglia, and parietal white matter were found to be significantly increased compared to controls. There was a positive correlation between basal ganglia Cho/Cr ratio and duration of exposure (r = 0.63). MR spectroscopy should be performed to reveal metabolite changes and determine the degree of brain involvement in solvent-related industry workers.  相似文献   

11.
Metabolite concentrations in normal adult brains and in gliomas were quantitatively analyzed by in vivo proton magnetic resonance spectroscopy (MRS) using the fully relaxed water signal as an internal standard. Between January 1998 and October 2001, 28 healthy volunteers and 18 patients with gliomas were examined by in vivo proton MRS. Single voxel spectra were acquired using the point-resolved spectroscopic pulse sequence with a 1.5-T scanner (TR/TE/Ave = 3000 ms/30 ms/64). The calculated concentrations of N-acetyl-aspartate (NAA), creatine (Cre), choline (Cho), and water (H2O) in the normal hemispheric white matter were 23.59 +/- 2.62 mM (mean +/- SD), 13.06 +/- 1.8 mM, 4.28 +/- 0.8 mM, and 47280.96 +/- 5414.85 mM, respectively. The metabolite concentrations were not necessarily uniform in different parts of the brain. The concentrations of NAA and Cre decreased in all gliomas (p < 0.001). The NAA/Cho and NAA/H2O ratios can distinguish the normal brain from gliomas, and low-grade astrocytoma from high-grade group (p < 0.001). The concentration of taurine (Tau) in medulloblastomas was 29.64 +/- 5.76 mM. This is the first quantitative analysis of Tau in medulloblastoma in vivo and confirms earlier in vitro findings.  相似文献   

12.
Metabolite concentrations in normal adult brains and in gliomas were quantitatively analyzed by in vivo proton magnetic resonance spectroscopy (MRS) using the fully relaxed water signal as an internal standard. Between January 1998 and October 2001, 28 healthy volunteers and 18 patients with gliomas were examined by in vivo proton MRS. Single-voxel spectra were acquired using the point-resolved spectroscopic (PRESS) pulse sequence with a 1.5 T scanner (TR/TE/Ave = 3000 ms/30 ms/64). The calculated concentrations of N-acetyl-aspartate (NAA), creatine (Cre), choline (Cho), and water(H(2)O) in the normal hemispheric white matter were 23.59 +/- 2.62 mM (mean +/- SD), 13.06 +/- 1.8 mM, 4.28 +/- 0.8 mM, and 47280.96 +/- 5414.85 mM, respectively. The metabolite concentrations were not necessarily uniform in different parts of the brain. The concentrations of NAA and Cre decreased in all gliomas (p < 0.001). The NAA/Cho and NAA/H(2)O ratios can distinguish the normal brain from gliomas and low-grade from high-grade astrocytoma (p < 0.001). The concentration of taurine (Tau) in medulloblastomas was 29.64 +/- 5.76 mM. This is the first quantitative analysis of Tau in medulloblastoma in vivo and confirms earlier in vitro findings.  相似文献   

13.
Two T2-independentJ-difference lactate editing schemes for the PRESS magnetic resonance spectroscopy localization sequence are introduced. The techniques, which allow for simultaneous acquisition of the lactate doublet (1.3 ppm) and edited singlets upfield of and including choline (3.2 ppm), exploit the dependence of the in-phase intensity of the methyl doublet upon the time interval separating two inversion (BASING) pulses applied to its coupling partner after initial excitation. Editing method 1, which allows for echo times TE =n/J(n= 1, 2, 3, …), alters the BASING carrier frequency for each of two cycles so that, for one cycle, the quartet is inverted, whereas, for the other cycle, the quartet is unaffected. Method 2, which also provides water suppression, allows for editing for TE > 1/Jby alternating, between cycles, the time interval separating the inversion pulses. Experimental results were obtained at 1.5 T using a Shinnar Le–Roux-designed maximum phase inversion pulse with a filter transition bandwidth of 55 Hz. Spectra were acquired from phantoms andin vivofrom the human brain and neck. In a neck muscle study, the lipid suppression factor, achieved partly through the use of a novel phase regularization algorithm, was measured to be over 103. Spectra acquired from a primary brain and a metastatic neck tumor demonstrated the presence of lactate and choline signals consistent with abnormal spectral patterns. The advantages and limitations of the methods are analyzed theoretically and experimentally, and significance of the results is discussed.  相似文献   

14.
Proton T2 relaxation times were measured in 13 stroke patients and 13 aged-matched normal subjects at 2.1 T. Spectra were acquired from an 8-cc volume using the STEAM sequence with echo times (TE) of 30.4 ms and 270.0 ms and repetition time of 2.8 s. Transverse relaxation times were estimated using two-point calculations. Percentage volume of infarct in the STEAM voxel was measured on spin-echo MRI encompassing the infarct and correlated with the peak amplitude of N-acetylated compounds (NA). T2 values of NA, creatine, and choline resonances showed no significant difference between patients and controls. T2 for lactate in patients was 780 ± 257 ms, respectively (mean ± SE, n = 7). In stroke patients, high inverse correlation was found between the absolute NA signal and partial volume of normal brain contributing to each spectrum (p < .001, r = 0.97). Together with unchanged T2, this suggests that NAA largely disappears from infarcted tissue within 24 hr postinfarct.  相似文献   

15.
We aimed to investigate the changes in proton metabolite levels at the motor and somatosensory cortex by magnetic resonance spectroscopy (MRS) after upper extremity replantation or revascularization. Nine patients who referred to our clinic suffering from major total (two) and subtotal (seven) amputation of the upper extremity were enrolled in this study. Mean time value between the injury and operation was 5.1 h. Mean follow-up period or mean time between the injury and MRS analysis was 26.2 months (ranging from 7 to 41 months). Voxels (TR: 2000; TE: 136 ms) were placed onto locations in the bilateral precentral and postcentral cortex area of the cerebral hemispheres that represent the upper extremity. Contralateral sides of the brain hemisphere that represent the injured extremity were accounted as control groups. Metabolite ratios [NAA (N-acetyl aspartate)/Cr (creatine) and Cho (choline)/Cr] of the motor and somatosensory cortex were calculated. The NAA/Cr and Cho/Cr metabolite ratios between the two groups were found to be insignificant, and these results may indicate that there is no remarkable somatosensorial cortex disruption or demyelination in these patients. Fifty-six percent of patients were found as functional according to Chen's scale.  相似文献   

16.

Purpose

The aim of this study was to determine the adequate MR sequence for the lesion conspicuity of hepatocellular lesions with increased iron uptake on superparamagnetic iron oxide (SPIO)-enhanced MRI.

Materials and Methods

SPIO-enhanced MRI was performed using a 1.5-T system. Among 25 patients with hypovascular hepatocellular nodules on contrast-enhanced dynamic CT (no early enhancement at arterial phase and hypoattenuation at equilibrium phase), 39 lesions with increased iron uptake on SPIO-enhanced MRI were evaluated. SPIO-enhanced MRI included (1) T1-weighted in-phase gradient recalled echo (GRE) images, (2) T2-weighted fast spin echo (FSE) images, (3) T2*-weighted GRE with moderate TE (7 ms) and (4) long TE (12 ms). The lesion-to-liver contrast-to-noise ratios of the hepatocellular nodule and the signal-to-noise ratio (SNR) of the hepatic parenchyma were calculated by one radiologist for a quantitative assessment. MR images were reviewed retrospectively by two independent radiologists to compare the subjective lesion conspicuity in each image set based on a four-point rating scale.

Result

The mean lesion-to-liver contrast-to-noise ratios with T2*-weighted GRE with moderate TE (7 ms) was highest (5.79±3.71) and was significantly higher than those with T1-weighted, in-phase images (3.79±3.23, P<.01), T2-weighted images (2.72±1.52, P<.001) and T2*-weighted GRE with long TE (12 ms) (3.93±2.69, P<.05). The subjective rating of lesion conspicuity was best on the T2*-weighted GRE with moderate TE (7 ms), followed by that on the T2*-weighted GRE with moderate TE (7 ms; P<.05).

Conclusion

T2*-weighted GRE sequence with moderate TE (7 ms) showed high lesion-to-liver contrast-to-noise ratios in hepatocellular lesions with increased iron uptake on SPIO-enhanced MRI, indicating better lesion conspicuity of hypointense hepatocellular nodules in cirrhosis or chronic hepatitis.  相似文献   

17.
Yet meningiomas have characteristic neuroimaging features, some other lesions are still confusing with meningiomas. The aim of this study was trying to find the typical (1)H-MRS metabolic factors of histologic subtyped meningiomas, schwannomas, metastases, and other brain tumors for differential diagnosis among them. (1)H-MRS using STEAM (TE/30 ms, TR/2 sec) and PRESS (TE/288 ms, TR/2 sec) sequences were performed on 44 untreated brain tumors. Obtained metabolic patterns from the typical spectra of meningioma, schwannoma, metastasis were compared with each other or other brain tumors to evaluate the usefulness for diagnosis between them. Alanine(Ala) was observed in 15 cases of the 19 meningiomas with a little variation to three histologic subtypes, while minimal lipids were observed in every 19 meningiomas. Elevated glutamate/glutamine(Glx) was detected in 12 cases of the meniningiomas. Increased myo-inositol(mI) was detected in 11 cases of the 13 schwannomas. Dominant lipids signals as well as long-T2 lipids were detected in every metastasis in conjunction with elevated choline (Cho). Enhanced Glx was observed in 4 cases of the 8 metastases without correlation of primary tumor site or types. Hemangiopericytoma showed different spectral patterns from typical meningiomas: only dominant Cho, minimal lipids and absence of Ala or Glx signals. These metabolic patterns in typical tumors may provide a basis for differential diagnosis (average value of chi(2) = 23.33, p < 0.01) between meningiomas and schwannomas as well as metastases. However proton spectral distinction among the different histologic subtypes of meningiomas was not definite.  相似文献   

18.
To measure water movement in the testis without the effects from the blood-testis barrier, we performed in vivo deuterium magnetic resonance imaging (2H MRI) of rats administered with deuterated saline. Alcohol was injected into one testis of each animal and the other was administered with normal saline as a control. Dynamic 2H MRI was obtained at 2 T by FLASH pulse sequence (TR, 300 ms; TE, 10 ms; α = 90°) using a surface coil (3 cm in diameter). The variation in 2H signal intensity between the two testes as a function of time after deuterated saline injection was examined every 1.1 min up to 20 min. The signal intensity in the testis receiving the alcohol treatment was lower than that in the normal control. Thus, deuterium MRI can be used to analyze functional disorders of the testis.  相似文献   

19.
Previous studies of renal stone disease (RSD) in Thailand indicated abnormal urinary aggregator and inhibitor composition among farmers with excessive sweat loss. Our aim was to compare the proton MR spectra obtained from the kidneys of 32 proven cases of RSD (aged 38 to 65 yrs) with nine age-matched normal control subjects. We used the STEAM sequence with TE = 15 ms and TR = 2000 ms. The spectra at 3.25, 3.6 and 3.9 ppm were analyzed. The results showed a correlation between the three peaks (p < 0.001), however, there was no significant difference between the RSD group and the normal control subjects. We therefore concluded that there was no overloading of these osmolytes among the renal stone patients.  相似文献   

20.
The limited bandwidths of volume selective RF pulses in localized in vivo MRS experiments introduce spatial artifacts that complicate spectral quantification of J-coupled metabolites. These effects are commonly referred to as a spatial interference or "four compartment" artifacts and are more pronounced at higher field strengths. The main focus of this study is to develop a generalized approach to numerical simulations that combines full density matrix calculations with 3D localization to investigate the spatial artifacts and to provide accurate prior knowledge for spectral fitting. Full density matrix calculations with 3D localization using experimental pulses were carried out for PRESS (TE=20, 70 ms), STEAM (TE=20, 70 ms) and LASER (TE=70 ms) pulse sequences and compared to non-localized simulations and to phantom solution data at 4 T. Additional simulations at 1.5 and 7 T were carried out for STEAM and PRESS (TE=20 ms). Four brain metabolites that represented a range from weak to strong J-coupling networks were included in the simulations (lactate, N-acetylaspartate, glutamate and myo-inositol). For longer TE, full 3D localization was necessary to achieve agreement between the simulations and phantom solution spectra for the majority of cases in all pulse sequence simulations. For short echo time (TE=20 ms), ideal pulses without localizing gradients gave results that were in agreement with phantom results at 4 T for STEAM, but not for PRESS (TE=20). Numerical simulations that incorporate volume localization using experimental RF pulses are shown to be a powerful tool for generation of accurate metabolic basis sets for spectral fitting and for optimization of experimental parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号