首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After the change of variables Δi = γi ? δi and xi,i + 1 = δi ? δi + 1 we show that the invariant polynomials μG(n)q(, Δi, ; , xi,i+1,) characterizing U(n) tensor operators 〈p, q,…, q, 0,…, 0〉 become an integral linear combination of Schur functions Sλ(γ ? δ) in the symbol γ ? δ, where γ ? δ denotes the difference of the two sets of variables {γ1 ,…, γn} and {δ1 ,…, δn}. We obtain a similar result for the yet more general bisymmetric polynomials mμG(n)q(γ1 ,…, γn; δ1 ,…, δm). Making use of properties of skew Schur functions Sλρ and Sλ(γ ? δ) we put together an umbral calculus for mμG(n)q(γ; δ). That is, working entirely with polynomials, we uniquely determine mμG(n)q(γ; δ) from mμG(n)q ? 1(γ; δ) and combinatorial rules involving Ferrers diagrams (i.e., partitions), provided that n ≥ (μ + 1)q. (This restriction does not interfere with writing the general case of mμG(n)q(γ; δ) as a linear combination of Sλ(γ ? δ).) As an application we deduce “conjugation” symmetry for nμG(n)q(γ; δ) from “transposition” symmetry by showing that these two symmetries are equivalent.  相似文献   

2.
A single serving queueing model is studied where potential customers are discouraged at the rate λn = λqn, 0 < q < 1, n is the queue length. The serving rate is μn = μ(1 ? qn), n = 0, 1,…. The spectral function is computed and the corresponding set of orthogonal polynomials is studied in detail. The slightly more general model with λn = λqn(1 + bqn), μn = μ(1 ? qn)(1 + bqn) and the analogous orthogonal polynomials are also investigated. In both cases a method developed by Pollaczek is used which has been used very successfully to study new sets of orthogonal polynomials by Askey and Ismail.  相似文献   

3.
Let G be a group, U a subgroup of G of finite index, X a finite alphabet and q an indeterminate. In this paper, we study symmetric polynomials M G (X,U) and MGq(X,U)M_{G}^{q}(X,U) which were introduced as a group-theoretical generalization of necklace polynomials. Main results are to generalize identities satisfied by necklace polynomials due to Metropolis and Rota in a bijective way, and to express MGq(X,U)M_{G}^{q}(X,U) in terms of M G (X,V)’s, where [V] ranges over a set of conjugacy classes of subgroups to which U is subconjugate. As a byproduct, we provide the explicit form of the GL m (ℂ)-module whose character is M\mathbbZq(X,n\mathbbZ)M_{\mathbb{Z}}^{q}(X,n\mathbb{Z}), where m is the cardinality of X.  相似文献   

4.
This is a continuation of our previous work. We classify all the simple ?q(D n )-modules via an automorphismh defined on the set { λ | Dλ ≠ 0}. Whenf n(q) ≠ 0, this yields a classification of all the simple ? q (D n)- modules for arbitrary n. In general ( i. e., q arbitrary), if λ(1) = λ(2),wegivea necessary and sufficient condition ( in terms of some polynomials ) to ensure that the irreducible ?q,1(B n )- module Dλ remains irreducible on restriction to ?q(D n ).  相似文献   

5.
For the quantum integer [n]q=1+q+q2+?+qn−1 there is a natural polynomial multiplication such that [m]qq[n]q=[mn]q. This multiplication leads to the functional equation fm(q)fn(qm)=fmn(q), defined on a given sequence of polynomials. This paper contains various results concerning the construction and classification of polynomial sequences that satisfy the functional equation, as well open problems that arise from the functional equation.  相似文献   

6.
For a connected graph G=(V,E), an edge set SE is a 3-restricted edge cut if GS is disconnected and every component of GS has order at least three. The cardinality of a minimum 3-restricted edge cut of G is the 3-restricted edge connectivity of G, denoted by λ3(G). A graph G is called minimally 3-restricted edge connected if λ3(Ge)<λ3(G) for each edge eE. A graph G is λ3-optimal if λ3(G)=ξ3(G), where , ω(U) is the number of edges between U and V?U, and G[U] is the subgraph of G induced by vertex set U. We show in this paper that a minimally 3-restricted edge connected graph is always λ3-optimal except the 3-cube.  相似文献   

7.
We define and study the invariant subcodes of the symmetry codes in order to be able to determine the algebraic properties of these codes. An infinite family of self-orthogonal rate 12 codes over GF(3), called symmetry codes, were constructed in [3]. A (2q + 2, q + 1) symmetry code, denoted by C(q), exists whenever q is an odd prime power ≡ ?1, (mod 3). The group of monomial transformations leaving a symmetry code invariant is denoted by G(q). In this paper we construct two subcodes of C(q) denoted by Rσ(q) and Rμ(q). Every vector in Rσ(q) is invariant under a monomial transformation τ in G(q) of odd order s where s divides (q + 1). Also Rμ(q) is invariant under τ but not vector-wise. The dimensions of Rσ(q) and Rμ(q) are determined and relations between these subcodes are given. An isomorphism is constructed between Rσ(q) and a subspace of W = V3(2q+2)s. It is shown that the image of Rσ(q) is a self-orthogonal subspace of W. The isomorphic images of Rσ(17) (under an order 3 monomial) and Rσ(29) (under an order 5 monomial) are both demonstrated to be equivalent to the (12, 6) Golay code.  相似文献   

8.
Thomas Aubriot 《代数通讯》2013,41(12):3919-3936
Pour toute algèbre enveloppante quantique Uq(𝔤) de Drinfeld–Jimbo et toute famille λ = (λij)1≤i ∈ k? d'éléments inversibles du corps de base, nous construisons explicitement par générateurs et relations un objet galoisien Aλ de Uq(𝔤) et nous montrons que tout objet galoisien de Uq(𝔤) est homotope à un unique objet de la forme Aλ.

For any Drinfeld–Jimbo quantum enveloping algebra Uq(𝔤) and for any family λ = (λij)1≤i ∈ k? of invertible elements of the base field, we explicitly construct a Galois object Aλ of Uq(𝔤) by generators and relations and we prove that any Galois object of Uq(𝔤) is homotopic to a unique object of type Aλ.  相似文献   

9.
In the paper, we further realize the higher rank quantized universal enveloping algebra Uq(sln+1) as certain quantum differential operators in the quantum Weyl algebra Wq (2n) defined over the quantum divided power algebra Sq(n) of rank n. We give the quantum differential operators realization for both the simple root vectors and the non-simple root vectors of Uq(sln+1). The nice behavior of the quantum root vectors formulas under the action of the Lusztig symmetries once again indicates that our realization model is naturally matched.  相似文献   

10.
We continue the study of the rational-slope generalized q,t-Catalan numbers c m,n (q,t). We describe generalizations of the bijective constructions of J. Haglund and N. Loehr and use them to prove a weak symmetry property c m,n (q,1)=c m,n (1,q) for m=kn±1. We give a bijective proof of the full symmetry c m,n (q,t)=c m,n (t,q) for min(m,n)≤3. As a corollary of these combinatorial constructions, we give a simple formula for the Poincaré polynomials of compactified Jacobians of plane curve singularities x kn±1=y n . We also give a geometric interpretation of a relation between rational-slope Catalan numbers and the theory of (m,n)-cores discovered by J. Anderson.  相似文献   

11.
12.
In this paper, we derive an explicit expression for the parameter sequences of a chain sequence in terms of the corresponding orthogonal polynomials and their associated polynomials. We use this to study the orthogonal polynomials Kn(λ,M,k) associated with the probability measure dφ(λ,M,k;x), which is the Gegenbauer measure of parameter λ+1 with two additional mass points at ±k. When k=1 we obtain information on the polynomials Kn(λ,M) which are the symmetric Koornwinder polynomials. Monotonicity properties of the zeros of Kn(λ,M,k) in relation to M and k are also given.  相似文献   

13.
Let D be a simply laced Dynkin diagram of rank r whose affinization has the shape of a star (i.e., D4,E6,E7,E8). To such a diagram one can attach a group G whose generators correspond to the legs of the affinization, have orders equal to the leg lengths plus 1, and the product of the generators is 1. The group G is then a 2-dimensional crystallographic group: G=Z??Z2, where ? is 2, 3, 4, and 6, respectively. In this paper, we define a flat deformation H(t,q) of the group algebra C[G] of this group, by replacing the relations saying that the generators have prescribed orders by their deformations, saying that the generators satisfy monic polynomial equations of these orders with arbitrary roots (which are deformation parameters). The algebra H(t,q) for D4 is the Cherednik algebra of type CC1, which was studied by Noumi, Sahi, and Stokman, and controls Askey-Wilson polynomials. We prove that H(t,q) is the universal deformation of the twisted group algebra of G, and that this deformation is compatible with certain filtrations on C[G]. We also show that if q is a root of unity, then for generic t the algebra H(t,q) is an Azumaya algebra, and its center is the function algebra on an affine del Pezzo surface. For generic q, the spherical subalgebra eH(t,q)e provides a quantization of such surfaces. We also discuss connections of H(t,q) with preprojective algebras and Painlevé VI.  相似文献   

14.
We denote by Gn the group of the upper unitriangular matrices over Fq, the finite field with q = pt elements, and r(Gn) the number of conjugacy classes of Gn. In this paper, we obtain the value of r(Gn) modulo (q2 -1)(q -1). We prove the following equalities  相似文献   

15.
The quantum mechanics of n particles interacting through analytic two-body interactions can be formulated as a problem of functional analysis on a Hilbert space G consisting of analytic functions. On G, there is an Hamiltonian H with resolvent R(λ). These quantities are associated with families of operators H(?) and R(λ, ?) on L, the case ? = 0 corresponding to standard quantum mechanics. The spectrum of H(?) consists of possible isolated points, plus a number of half-lines starting at the thresholds of scattering channels and making an angle 2? with the real axis.Assuming that the two-body interactions are in the Schmidt class on the two-particle space G, this paper studies the resolvent R(λ, ?) in the case ? ≠ 0. It is shown that a well known Fredholm equation for R(λ, ?) can be solved by the Neumann series whenever ¦λ¦ is sufficiently large and λ is not on a singular half-line. Owing to this, R(λ, ?) can be integrated around the various half-lines to yield bounded idempotent operators Pp(?) (p = 1, 2,…) on L. The range of Pp(?) is an invariant subspace of H(?). As ? varies, the family of operators Pp(?) generates a bounded idempotent operator Pp on a space G. The range of this is an invariant subspace of H. The relevance of this result to the problem of asymptotic completeness is indicated.  相似文献   

16.
We consider Hill's equation y″+(λq)y=0 where qL1[0,π]. We show that if ln—the length of the n-th instability interval—is of order O(n−(k+2)) then the real Fourier coefficients ank,bnk of q(k)k-th derivative of q—are of order O(n−2), which implies that q(k) is absolutely continuous almost everywhere for k=0,1,2,….  相似文献   

17.
Kostka functions K_(λ,μ)~±(t), indexed by r-partitions λ and μ of n, are a generalization of Kostka polynomials K_(λ,μ)(t) indexed by partitions λ,μ of n. It is known that Kostka polynomials have an interpretation in terms of Lusztig's partition function. Finkelberg and Ionov(2016) defined alternate functions K_(λ,μ)(t) by using an analogue of Lusztig's partition function, and showed that K_(λ,μ)(t) ∈Z≥0[t] for generic μ by making use of a coherent realization. They conjectured that K_(λ,μ)(t) coincide with K_(λ,μ)~-(t). In this paper, we show that their conjecture holds. We also discuss the multi-variable version, namely, r-variable Kostka functions K_(λ,μ)~±(t_1,…,t_r).  相似文献   

18.
The main aim of the paper is to study infinite-dimensional representations of the real form U q (u n, 1) of the quantized universal enveloping algebra U q (gl n + 1). We investigate the principal series of representations of U q (u n, 1) and calculate the intertwining operators for pairs of these representations. Some of the principal series representations are reducible. The structure of these representations is determined. Then we classify irreducible representations of U q (u n, 1) obtained from irreducible and reducible principal series representations. All *-representations in this set of irreducible representations are separated. Unlike the classical case, the algebra U q (u n, 1) has finite-dimensional irreducible *-representations.  相似文献   

19.
Some parallel results of Gross' paper (Potential theory on Hilbert space, J. Functional Analysis1 (1967), 123–181) are obtained for Uhlenbeck-Ornstein process U(t) in an abstract Wiener space (H, B, i). Generalized number operator N is defined by Nf(x) = ?lim∈←0{E[f(Uξ))] ? f(x)}/Eξ, where τx? is the first exit time of U(t) starting at x from the ball of radius ? with center x. It is shown that Nf(x) = ?trace D2f(x)+〈Df(x),x〉 for a large class of functions f. Let rt(x, dy) be the transition probabilities of U(t). The λ-potential Gλf, λ > 0, and normalized potential Rf of f are defined by Gλf(X) = ∫0e?λtrtf(x) dt and Rf(x) = ∫0 [rtf(x) ? rtf(0)] dt. It is shown that if f is a bounded Lip-1 function then trace D2Gλf(x) ? 〈DGλf(x), x〉 = ?f(x) + λGλf(x) and trace D2Rf(x) ? 〈DRf(x), x〉 = ?f(x) + ∫Bf(y)p1(dy), where p1 is the Wiener measure in B with parameter 1. Some approximation theorems are also proved.  相似文献   

20.
We prove that Holman's hypergeometric series well-poised in SU(n) satisfy a general difference equation. We make use of the “path sum” function developed by Biedenharn and this equation to show that a special class of these series, multiplied by simple products, may be regarded as a U(n) generalization of Biedenharn and Louck's G(Δ; X) functions for U(3). The fact that these generalized G-functions are polynomials follows from a detailed study of their symmetries and zeros. As a further application of our general difference equations, we give an elementary proof of Holman's U(n) generalization of the 5F4(1) summation theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号