首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied equilibrium adsorption and uptake kinetics and identified molecular species that formed during sorption of carbon dioxide on amine-modified silica. Bicontinuous silicas (AMS-6 and MCM-48) were postsynthetically modified with (3-aminopropyl)triethoxysilane or (3-aminopropyl)methyldiethoxysilane, and amine-modified AMS-6 adsorbed more CO(2) than did amine-modified MCM-48. By in situ FTIR spectroscopy, we showed that the amine groups reacted with CO(2) and formed ammonium carbamate ion pairs as well as carbamic acids under both dry and moist conditions. The carbamic acid was stabilized by hydrogen bonds, and ammonium carbamate ion pairs formed preferably on sorbents with high densities of amine groups. Under dry conditions, silylpropylcarbamate formed, slowly, by condensing carbamic acid and silanol groups. The ratio of ammonium carbamate ion pairs to silylpropylcarbamate was higher for samples with high amine contents than samples with low amine contents. Bicarbonates or carbonates did not form under dry or moist conditions. The uptake of CO(2) was enhanced in the presence of water, which was rationalized by the observed release of additional amine groups under these conditions and related formation of ammonium carbamate ion pairs. Distinct evidence for a fourth and irreversibly formed moiety was observed under sorption of CO(2) under dry conditions. Significant amounts of physisorbed, linear CO(2) were detected at relatively high partial pressures of CO(2), such that they could adsorb only after the reactive amine groups were consumed.  相似文献   

2.
Airborne formaldehyde, which is a highly problematic volatile organic compound (VOC) pollutant, is adsorbed by polymeric amine‐incorporated silicas (aminosilicas), and the factors that affect the adsorption performance are systematically investigated. Three different types of polymeric amines 1) poly(ethyleneimine) branched (PEIBR); 2) poly(ethyleneimine) linear (PEILI); and 3) poly(allylamine) (PAA) are impregnated into two types of porous silicas [SBA‐15 and mesocellular foam (MCF) silicas] with systematic changes of the amine loadings. The adsorption results demonstrate that the adsorption capacity increases along with the amine loading until the polymeric amines completely fill the silica pores. This results in the MCF silica, which has a larger pore volume and hence can accommodate more polymeric amine before completely filling the pore, giving materials that adsorb more formaldehyde, with the largest adsorption capacity, q, of up to 5.7 mmolHCHO g?1 among the samples studied herein. Of the three different types of polymers, PAA, comprised of 100 % primary amines, showed the highest amine efficiency μ (mmolHCHO/mmolN) for capturing formaldehyde. The chemical structures of the adsorbed formaldehyde are analyzed by 13C cross‐polarization magic‐angle spinning (CP‐MAS) NMR, and it is demonstrated that the adsorbed formaldehyde is chemically attached to the aminosilica surface, forming hemiaminal and imine species. Because the chemical adsorption of formaldehyde forms covalent bonds, it is not desorbed from the aminosilicas below 130 °C based on temperature‐programed‐desorption (TPD) analysis. The high formaldehyde‐adsorption capacity and stability of the trapped formaldehyde on the amine surface in this study reveal the potential utility of aminosilicas as formaldehyde abatement materials.  相似文献   

3.
MCM-48 was surface modified via vapor-phase reactions with hexamethyldisilazane (CH(3)-MCM-48) and 3-aminopropyldimethylethoxysilane (NH(2)-MCM-48). (29)Si NMR confirmed that the resulting materials contained covalently attached trimethylsilane and 3-aminopropyldimethylsilane moieties, both important functionalities for bioseparation applications. The surface coverage was approximately 1.8 and 0.9 groups per nm(2), respectively. The X-ray diffraction patterns and the narrow pore size distributions obtained from the gas sorption isotherms showed that the modified materials retained the characteristic pore structure of the underlying MCM-48 material. CH(3)-MCM-48 exhibited significantly improved hydrolytic stability over the unmodified MCM-48 under the aqueous conditions tested, whereas NH(2)-MCM-48 appeared to be less stable than the unmodified MCM-48. The decrease in stability is most likely due to the nature of the attachment of the 3-aminopropyldimethylsilane moiety, where the conversion of surface silanol groups is limited by H bonding with the amino end, leading to a 50% lower surface concentration and resulting in an increased likelihood of nucleophilic attack on the silica surface, enhancing the rate of hydrolysis. Hexamethyldisilazane thus appears to be a superior functional group for modifying the MCM-48 surface.  相似文献   

4.
This paper reports a molecular simulation and experimental study on the adsorption and condensation of simple fluids in mesoporous micelle-templated silicas MCM-41, MCM-48, and SBA-15. MCM-41 is described as a regular cylindrical silica nanopore, while SBA-15 is assumed to be made up of cylindrical nanopores that are connected through lateral channels. The 3D-connected topology of MCM-48 is described using a gyroid periodic minimal surface. Argon adsorption at 77 K is calculated for the three materials using Grand Canonical Monte Carlo simulations. Qualitative comparison with experiments for nitrogen adsorption in mesoporous micelle-templated silicas is made. The adsorption isotherm for SBA-15 resembles that for MCM-41. In particular, capillary condensation and evaporation are not affected by the presence of the connecting lateral channels. In contrast, the argon adsorption isotherm for MCM-48 departs from that for MCM-41 having the same pore size. While condensation in MCM-41 is a one-step process, filling of MCM-48 involves two successive jumps in the adsorbed amounts which correspond to condensation in different domains of the porosity. The condensation pressure for MCM-48 is larger than that for MCM-41. We attribute this result to the morphology of the MCM-48 surface (made up of both concave and convex regions) that differs from that for MCM-41 (concave only). Our results suggest that the pore connectivity affects pore filling when the size of the connections is comparable to that of the nanopores.  相似文献   

5.
介孔材料氨基表面修饰及其对CO2的吸附性能   总被引:15,自引:0,他引:15  
采用接枝方法在介孔材料MCM-41和SBA-15的孔道内表面进行氨基化修饰, XRD、29Si-NMR、FT-IR、TGA、BET等测试结果表明, 氨丙基三乙氧基硅烷(APTS)和氨乙基氨丙基甲基二甲氧基硅烷(AEAPMDS)都分别接枝在介孔材料的孔道内, 表面氨基修饰量约为1.5-2.9 mmol·g-1. 表面修饰后介孔材料的孔道仍高度有序, 但比表面积减小. 表面修饰前后介孔材料对CO2的吸附性能发生显著变化, 由于物理吸附转化为以氨基为活性中心的化学吸附, 吸附量从修饰前的0.67 mmol·g-1提高到2.20 mmol·g-1.  相似文献   

6.
Quasi equilibrated temperature programmed desorption and adsorption (QE-TPDA) of hexane and cyclohexane was applied for characterization of zeolites 5A, ZSM-5, 13X, Y, NaMOR and ordered mesoporous silicas MCM-41, MCM-41/TMB, SBA-15 and HMS. Similar QE-TPDA profiles of hexane and cyclohexane with a single desorption maximum were observed for the wide pore zeolites. No adsorption of cyclohexane for zeolite 5A and a single desorption maximum for ZSM-5 were found, while two-step desorption profiles of hexane were observed for these zeolites. Similar values of the adsorption enthalpy and entropy of hexane and cyclohexane were obtained by fitting the Langmuir model functions for the zeolites X and Y. For NaMOR and ZSM-5 larger differences in these parameters were found. A single desorption peak found at low temperatures in the QE-TPDA profiles of hexane and cyclohexane for the studied silicas was attributed to the multilayered adsorption on their mesopore surface. The adsorption isobars calculated from the thermodesorption profiles were fitted with the BET function. This way values of the specific surface area and the adsorption heat were calculated. Additionally values of the initial heat of adsorption were found by fitting the Henry’s law to the high-temperature sections of the linearized isobars. The largest deviations from the BET and Henry functions and the largest values of the adsorption heats found for SBA-15 indicated the greatest heterogeneity of the adsorption sites on its surface.  相似文献   

7.
The dynamic adsorption/desorption behavior of volatile organic compounds (VOCs) such as toluene (C7H8) and benzene (C6H6) was evaluated for three kinds of mesoporous silicas of SBA-15, all having almost the same mesopore size of ca. 5.7 nm, and a MCM-41 silica with a smaller pore size of 2.1 nm using a continuous three-step test. The fiberlike SBA-15 silica exhibited exceptionally good breakthrough behavior, a higher VOC capacity, and easier desorption. The fiberlike silica was composed through the catenation of rodlike particles. The rodlike silicas, by comparison, were proven to be less useful in dynamic adsorption processes because of lower dynamic VOC capacities despite having comparative porous parameters with the fiberlike silica. The large dynamic VOC capacity of the fiberlike silica was attributed to the presence of a bimodal pore system consisting of longer, one-dimensional mesopore channels connected by complementary micropores.  相似文献   

8.
Novel low-cost and effective adsorbents of phenol and basic dyes were made by coating amorphous silica with hydrotalcite (HT) gel followed by soaking in alkaline solution, and the surface basic-acidic properties of resulting composites were evaluated by CO(2)-TPD, Hammett indicator method and NH(3)-TPD, respectively. Both BET surface area and microporous surface area of the composites were increased after they were soaked with alkaline solution; meanwhile the center of pore size distribution was changed from 9 to 3-4 nm. These composites efficiently captured phenol in gaseous and liquid phases, superior to mesoporous silica such as MCM-48 or SBA-15 and zeolite NaY, and the equilibrium data of gaseous adsorption could be well fitted to Freundlich model. These modified silicas also exhibited high adsorption capacity forward basic dyes such as crystal violet (CV) and leuco-crystal violet (LCV), reaching the adsorption equilibrium within 1 h and offering a new material for environment protection.  相似文献   

9.
Polyoxometalates K7[α-PW11O39]·14H2O (PW11) modified mesoporous silica (MCM-48) with cubic structure, was prepared by impregnation and calcination methods. The modified mesoporous silica sorbent (PW11/MCM-48) was studied as a potential adsorbent for U(VI) from aqueous solutions. MCM-48 and PW11/MCM-48 were confirmed by X-ray diffraction and nitrogen physisorption techniques. The results indicate the original keggin structure of PW11 and mesoporous structure of MCM-48 are maintained after supporting PW11 on mesoporous silica MCM-48. The effects of contact time, solid-to-liquid ratio (m/V), solution pH and ionic strength on U(VI) sorption behaviors of the pure and modified mesoporous silicas were also studied. Typical sorption isotherms such as Langmuir and Freundlich isotherms were determined for sorption process. The results suggest that the sorption of U(VI) on MCM-48 or PW11/MCM-48 are strongly dependent on pH values but independent of ionic strength. The sorption capacity of PW11/MCM-48 for U(VI) is about ten times more than that of MCM-48.  相似文献   

10.
MCM-41 and SBA-15 silicas were studied by (29)Si solid-state NMR and (15)N NMR in the presence of (15)N-pyridine with the aim to formulate generic structural parameters that may be used as a checklist for atomic-scale structural models of this class of ordered mesoporous materials. High-quality MCM-41 silica constitutes quasi-ideal arrays of uniform-size pores with thin pore walls, while SBA-15 silica has thicker pore walls with framework and surface defects. The numbers of silanol (Q(3)) and silicate (Q(4)) groups were found to be in the ratio of about 1:3 for MCM-41 and about 1:4 for our SBA-15 materials. Combined with the earlier finding that the density of surface silanol groups is about three per nm(2) in MCM-41 (Shenderovich, et al. J. Phys. Chem. B 2003, 107, 11924) this allows us to discriminate between different atomic-scale models of these materials. Neither tridymite nor edingtonite meet both of these requirements. On the basis of the hexagonal pore shape model, the experimental Q(3):Q(4) ratio yields a wall thickness of about 0.95 nm for MCM-41 silica, corresponding to the width of ca. four silica tetrahedra. The arrangement of Q(3) groups at the silica surfaces was analyzed using postsynthesis surface functionalization. It was found that the number of covalent bonds to the surface formed by the functional reagents is affected by the surface morphology. It is concluded that for high-quality MCM-41 silicas the distance between neighboring surface silanol groups is greater than 0.5 nm. As a result, di- and tripodical reagents like (CH(3))(2)Si(OH)(2) and CH(3)Si(OH)(3) can form only one covalent bond to the surface. The residual hydroxyl groups of surface-bonded functional reagents either remain free or interact with other reagent molecules. Accordingly, the number of surface silanol groups at a given MCM-41 or SBA-15 silica may not decrease but increase after treatment with CH(3)Si(OH)(3) reagent. On the other hand, nearly all surface silanol groups could be functionalized when HN(Si(CH(3))(3))(2) was used.  相似文献   

11.
The Keggin and Preyssler tungsten heteropolyacids, H3PW12O40 and H15P5W30O110, have been immobilized on the inner surface of mesoporous MCM-41, fume silica and silica-gel by means of chemical bonding to aminosilane groups. The materials were characterized by FT-IR spectroscopy, low-angle XRD and BET surface area analysis. The tendencies of heteropolyacids adsorption in solution on functionalized silicas have been investigated by UV-vis. Among the functionalized silica materials, MCM-41 showed the largest amine to silica and the least heteropolyacid to silica ratios. The BET surface area revealed that in all three cases the surface area decreased after grafting amine group and anchoring of the HPAs clusters. Low-angle XRD analysis showed that by introducing HPA into functionalized MCM-41 the intensity of the main reflection decreased significantly.  相似文献   

12.
Three adsorbents were prepared by different modification methods, which were grafting silica gel with (3-aminopropyl) trimethoxysilane, grafting silica gel with acrylamide polymer, and impregnating silica gel with acrylamide polymer, respectively. The characterization of materials was carried out by N(2) adsorption experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermo-gravimetric analysis, and elemental analyses. The results showed that the amine group was successfully loaded on all three modified adsorbents; among that, the polymer-modified silica adsorbents had higher amine content and larger surface area than the aminopropyl-grafted silica adsorbent and displayed higher thermal stability than the other polymer-modified silica materials previously reported. The CO(2) adsorption/desorption experiments performed at 25°C by TGA-DSC method showed that the highest CO(2) adsorption capacity (0.98 mmol/g) was observed for the polymer-impregnated silica adsorbent. CO(2) adsorbed on all samples was completely desorbed by purging with inert gas at 60°C except for the aminopropyl-grafted silica material, which showed the highest enthalpy of CO(2) adsorption.  相似文献   

13.
The novel mesoporous templated silicas (MCM-48, SBA-15, MCF, and MSU) were used as supports for transition metal (Cu, Cr, or Fe) oxides. The catalysts were synthesized using the incipient wetness impregnation, and characterized by low-temperature N2 sorption, DRIFT, photoacoustic IR spectroscopy, UV-vis diffuse reflectance spectroscopy, and temperature-programmed desorption of ammonia. It was shown that the preparation method used results in different distributions and dimensions of the transition metal oxide clusters on the inert support surface. The prepared catalysts were tested in the reaction of oxidative dehydrogenation of ethylbenzene in the presence of nitrous oxide. The iron-containing catalysts showed the highest catalytic activity. The presence of isolated Fe3+ was found to be the most important factor influencing the ethylbenzene conversion. The undesirable effect of the increase in selectivity toward CO2 was observed for the samples with the highest concentrations of acidic surface sites.  相似文献   

14.
We construct an atomistic silica pore model mimicking templated mesoporous silica MCM-41, which has molecular-level surface roughness, with the aid of the electron density profile (EDP) of MCM-41 obtained from X-ray diffraction data. Then, we present the GCMC simulations of argon adsorption on our atomistic silica pore models for two different MCM-41 samples at 75, 80, and 87 K, and the results are compared with the experimental adsorption data. We demonstrate that accurate molecular modeling of the pore structure of MCM-41 by using the experimental EDP allows the prediction of experimental capillary evaporation pressures at all investigated temperatures. The experimental desorption branches of the two MCM-41 samples are in good agreement with equilibrium vapor–liquid transition pressures from the simulations, which suggests that the experimental desorption branch for the open-ended cylindrical pores is in thermodynamic equilibrium.  相似文献   

15.
Moderate basic sites could be created onto mesoporous Si-MCM-41 materials by postsynthesis modification with highly dispersed La2O3. The La2O3-modified MCM-41 materials (designated here as LaM) have been characterized by Fourier transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, X-ray diffraction (XRD), and N2 adsorption/desorption and have been tested as model adsorbents for CO2 adsorption. XRD and N2 adsorption results showed that all LaM materials still maintained their uniform hexagonal mesoporous structure even after postsynthesis modification with La2O3 loading up to 20 wt %. Although the surface area, pore size, and pore volume of LaM materials decreased with increasing La2O3 loading, their capacity for CO2 storage could be significantly improved when La2O3 loading was increased from 0 to 10 wt %. Unidentate and bidentate carbonates have been identified by in situ FTIR as the two types of CO2 species adsorbed on LaM surface. The LaM material also possesses good thermal stability, allowing the model adsorbent to be regenerated at high temperature and recyclable.  相似文献   

16.
Effects of the nature of functional groups (namely, hydroxyl, methyl, silicon hydride, amino, and vinyl) on the surface of pristine and modified silicas on polymerization of 2-hydroxyethylmethacrylate (HEMA) and on structural characteristics of the filled composites have been studied. DSC, FTIR spectroscopy and equilibrium water sorption (ESI) techniques were applied for the composites characterization. Results obtained testify that the chemical nature of the grafted groups has a strong influence on the monomer orientation in the surface layer of the filler. More uniform and cross-linked structures were detected in the composites with particularly methylated silica. Filler with chemically active silicon hydride groups promotes formation of ordered structure with rigid macromolecules. The presence of amino and vinyl groups on the silica surface results in formation of flexible polymer chains with a low cross-linking density or with a low polymerization degree, even at 2?wt% filling degree. Water uptake for composites with vinyl- and amine-containing silicas was low, indicating the close-packing of polymeric molecules in the filled polyHEMA.  相似文献   

17.
The adsorption of two common organophosphorus pesticides, diethoxy-[(2-isopropyl-6-methyl-4-pyrimidinyl)oxy]-thioxophosphorane (diazinon) and dimethoxy-(3-methyl-4-nitrophenoxy)-thioxophosphorane (fenitrothion), by MCM-41 and MCM-48 mesoporous silicas at room temperature was investigated. UVvis and IR spectroscopy, small-angle X-ray diffraction, and the specific surface area analysis (S BET) were used to study the adsorption behavior of diazinon and fenitrothion. The results show that the MCM-41 and MCM-48 mesoporous silicas adsorb diazinon more efficiently than fenitrothion. The extraction of adsorbed materials from the adsorbents with polar solvents and subsequent analysis by 31P NMR showed that the adsorption of diazinon and fenitrothion on mesoporous silicas is destructive and non-destructive, respectively. Nitrogen adsorption measurements showed that the specific surface area of both silicas decreases after the adsorption of pesticides, and the larger effect is observed for diazinon. The article is published in the original.  相似文献   

18.
This work is focused on the elaboration of methodology for adsorption characterization of porous silicas by using benzene adsorption isotherms measured on good quality MCM-41 materials. Three MCM-41 samples were synthesized by using tetraethyl orthosilicate (TEOS) as silica source and surfactants, octyltrimethylammonium (C8), decyltrimethylammonium (C10) and cetyltrimethylammonium (C16) bromides as templates. A characteristic feature of this synthesis was relatively long hydrothermal treatment (5 days) at 373 K, which gave well ordered samples as evidenced by powder XRD analysis. Benzene adsorption isotherms measured on these MCM-41 samples were used to evaluate such standard quantities as the BET specific surface area, total pore volume, external surface area and the volume of ordered mesopores, and to obtain the statistical film thickness (t-curve) as well as the Kelvin-type relation, which describes the dependence between pore width and condensation pressure for benzene on silica at 298 K. The latter relations were incorporated into the Barrett-Joyner-Halenda algorithm to extend its applicability to calculate the pore size distributions from benzene adsorption data.  相似文献   

19.
Four samples of MCM-41 mesoporous silicas whose average pore diameters are 2.4, 2.8, 3.2, and 3.6 nm were prepared using sodium orthosilicate and cationic surfactants of [CH(3)(CH(2))(n)N(CH(3))(3)]X (n=11, 13, 15, 17). These four samples were calcined at 1123 K in vacuo to obtain the dehydroxylated samples, which were further rehydroxylated at 298 K to obtain the rehydroxylated samples. The adsorption isotherms of nitrogen gas (77 K) for the 12 MCM-41 mesoporous silicas are of Type IVc, giving no adsorption hysteresis. On the other hand, the first adsorption isotherms of water vapor (298 K) for the dehydroxylated MCM-41 samples are quite different from those of nitrogen gas, giving the remarkable adsorption hysteresis. The second water isotherms for the rehydroxylated MCM-41 samples are of Type IV, showing slight hysteresis. Using the nitrogen isotherms, the relation between the pore size and carbon chain length of the surfactant has been determined, and the effect of dehydroxylation and rehydroxylation on the porous texture has been examined. Using the first and second water isotherms, the adsorption model of physisorbed waters adsorbed on the surface silanol groups has been proposed. From the pore size distribution curves of nitrogen and water, the presence of constrictions in the cylindrical pores has been predicted. Copyright 2000 Academic Press.  相似文献   

20.
We present an accurate comparative analysis of N 2 adsorption at 77 K on nonporous silica and the pore wall surface of MCM-41 materials. The analysis shows that in the low-pressure region of N 2 adsorption obeys a peculiar mechanism governed by short-ranged forces, which makes the surface curvature effect on the N 2 adsorption in mesopores nearly negligible. We used this observation to define more exactly compared to the BET technique the specific surface area of the reference adsorption isotherm on nonporous silica basing on XRD data and linear sections of t-plots. Calculation of the capillary evaporation and condensation pressures seems to confirm our previous finding that the capillary condensation pressure corresponds to the equilibrium transition rather than spinodal condensation at least for pore sizes less than 7 nm. It allowed us to provide more reliable pore size distribution (PSD) analysis of mesoporous silica materials. For example, the PSDs of MCM-41 samples do not show artificial peaks in the micropore range that we obtained in our earlier publications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号