首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A capillary zone electrophoresis–laser-induced fluorescence detection (CZE-LIF) method was developed for the simultaneous analysis of disaccharides derived from heparan sulfate, chondroitin sulfate/dermatan sulfate, hyaluronan, and keratan sulfate. Glycosaminoglycans (GAGs) were first depolymerized with the mixture of GAG lyases (heparinase I, II, III and chondroitinase ABC and chondroitinase AC II) and GAG endohydrolase (keratinase II) and the resulting disaccharides were derivatized by reductive amination with 2-aminoacridone. Nineteen fluorescently labeled disaccharides were separated using 50 mM phosphate buffer (pH 3.3) under reversed polarity at 25 kV. Using these conditions, all the disaccharides examined were baseline separated in less then 25 min. This CZE-LIF method gave good reproducibility for both migration time (≤1.03 % for intraday and ≤4.4 % for interday) and the peak area values (≤5.6 % for intra- and ≤8.69 % for interday). This CZE-LIF method was used for profiling and quantification of GAG derivative disaccharides in bovine cornea. The results show that the current CZE-LIF method offers fast, simple, sensitive, reproducible determination of disaccharides derived from total GAGs in a single run.
Figure
Separation of 19 glycosaminoglycan-derived disaccharides using CZE. These disaccharides are HA (pink), HS (blue), CS (green) and KS (red). Residual AMAC tag is shown in orange.  相似文献   

2.
The glycosaminoglycan (GAG) heparin is a polyanionic sulfated polysaccharide most recognized for its anticoagulant activity. In the present study, the GAGs were extracted from bivalve mollusc Amussium pleuronectus. The crude GAGs were fractionated by ion-exchange (DEAE-cellulose and Amberlite IRA-900 & 120) chromatography. The recovered active fractions (as determined by metachromatic assay) were confirmed by agarose gel electrophoresis and the active fractions were purified in Sephadex G-100 column. Fractionated and purified GAG molecular weight was determined through gradient polyacrylamide gel electrophoresis. The structural characterization of low molecular weight GAG was analyzed by Fourier transform infrared spectroscopy. The activated partial thromboplastin time of purified GAG is 95 IU/mg and has molecular weight 6,500–7,500 Da. The disaccharide compositional analysis on the GAG sample was sulfated like porcine intestinal mucosal heparan sulfate, and it contains equivalent amount of uronic acid and hexosamine. The results of this study suggest that the GAG from A. pleuronectus could be an alternative source of heparin.  相似文献   

3.
Mucopolysaccharidoses (MPSs) are a group of disorders resulting from primary defects in lysosomal enzymes involved in the degradation of glycosaminoglycans (GAGs). Depending on the specific enzyme defect, the catabolism of one or more GAGs is blocked leading to accumulation in tissues and biological fluids. GAG measurements are important for high-risk screening, diagnosis, monitoring treatment efficacy, and patient follow up. The dimethylmethylene blue (DMB) spectrophotometric method commonly used in most biochemical genetics laboratories relies on a non-specific total GAG analysis which has led to false positive results, and even false negative results (mainly for MPS III and IV patients). The main objective of our project was to devise and validate a reliable tandem mass spectrometry multiplex analysis for the urine quantitation of four GAGs (dermatan sulfate (DS), heparan sulfate (HS), keratan sulfate (KS), and chondroitin sulfate (CS)) for an eventual technological transfer to the clinic. The developed methodology is rapid (7 min) and our results showed good intraday and interday precision (RSDs ≤ 8.7%) and accuracy (Biases range: −12.0%–18.4%). Linearity was good (r2 > 0.995) for DS, HS, CS, and KS calibration curves. In comparison with the DMB spectrophotometric method, this multiplex tandem mass spectrometry method allows GAG fractionation, thus a differentiation of MPS types, except for MPS I and II which are characterized by the same GAG profile. The devised method is a useful and reliable tool for diagnosis of MPS patients, as well as their monitoring and follow up, as shown by longitudinal studies.  相似文献   

4.
We recently identified vibrational spectroscopic markers characteristic of standard glycosaminoglycan (GAG) molecules. The aims of the present work were to further this investigation to more complex biological systems and to characterize, via their spectral profiles, cell types with different capacities for GAG synthesis. After recording spectral information from individual GAG standards (hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparan sulfate) and GAG-GAG mixtures, GAG-defective mutant Chinese hamster ovary (CHO)-745 cells, wild-type CHO cells, and chondrocytes were analyzed as suspensions by high-throughput infrared spectroscopy and as single isolated cells by infrared imaging. Spectral data were processed and interpreted by exploratory unsupervised chemometric methods based on hierarchical cluster analysis and principal component analysis. Our results showed that the spectral information obtained was discriminant enough to clearly delineate between the different cell types both at the cell suspension and single-cell levels. The abilities of the technique are to perform spectral profiling and to identify single cells with different potentials to synthesize GAGs. Infrared microspectroscopy/imaging could therefore be developed for cell screening purposes and further for identifying GAG molecules in normal tissues during physiological conditions (aging, healing process) and numerous pathological states (arthritis, cancer). Figure
FTIR imaging for profiling GAG-synthesizing cells  相似文献   

5.
Volpi N  Maccari F  Linhardt RJ 《Electrophoresis》2008,29(15):3095-3106
Complex natural polysaccharides, glycosaminoglycans (GAGs), are a class of ubiquitous macromolecules that exhibit a wide range of biological functions and participate and regulate multiple cellular events and (patho)physiological processes. They are generally present either as free chains (hyaluronic acid and bacterial acidic polysaccharides) or as side chains of proteoglycans (PGs; chondroitin/dermatan sulfate, heparin/heparan sulfate, and keratan sulfate) and are most often found in cell membranes and in the extracellular matrix. The recent emergence of modern analytical tools for their study has produced a virtual explosion in the field of glycomics. CE, due to its high resolving power and sensitivity, has been useful in the analysis of intact GAGs and GAG-derived oligosaccharides and disaccharides affording concentration and structural characterization data essential for understanding the biological functions of GAGs. In this review, novel off-line and on-line CE-MS and MS/MS methods for screening of GAG-derived oligosaccharides and disaccharides will be discussed.  相似文献   

6.
The extracellular environment is largely comprised of complex polysaccharides, which were historically considered inert materials that hydrated the cells and contributed to the structural scaffolds. Recent advances in development of sophisticated analytical techniques have brought about a dramatic transformation in understanding the numerous biological roles of these complex polysaccharides. Glycosaminoglycans (GAGs) are a class of these polysaccharides, which bind to a wide variety of proteins and signaling molecules in the cellular environment and modulate their activity, thus impinging on fundamental biological processes. Despite the importance of GAGs modulating biological functions, there are relatively few examples that demonstrate specificity of GAG-protein interactions, which in turn define the structure-function relationships of these polysaccharides. Focusing on heparin/heparan (HSGAGs) and chondroitin/dermatan sulfate (CSGAGs), this review provides structural insights into the oligosaccharide-protein interactions and discusses some key and challenging aspects of understanding GAG structure-function relationships.  相似文献   

7.
Identification of glycosaminoglycans (GAGs) synthesized by three human leukaemic cell lines-Jurkat (T-cell leukaemia), Daudi (Burkitt's lymphoma, B-cell leukaemia) and THP-1 (acute monocytic leukemia)-and normal peripheral blood mononuclear cells (PBMC) and their distribution among cell membrane and culture medium were studied. GAGs were isolated using ion-exchange chromatography on DEAE-Sephacel and their composition and fine chemical structure were studied using high-performance liquid chromatography with radiochemical detection. All cell lines synthesize chondroitin sulphate (CS) and heparan sulphate (HS) in both cell membrane and culture medium. No hyaluronan was detected using treatment with specific lyases and highly sensitive HPLC methodology. CS is the major secreted GAG in all cell lines tested and the major cell retained GAG in Jurkat and Daudi. HS is the major GAG in the cell membrane of THP-1. The amounts of distinct GAGs synthesized by all cancer cell lines differ from those produced by normal PBML indicating a major role of GAGs in malignant transformation of human lymphocytes and monocytes.  相似文献   

8.
Glycosaminoglycans (GAGs) chondroitin sulfate, heparin, hyaluronan, and sulfated hyaluronan are lower and higher thiolated to enable a one?step covalent modification of gold or vinyl?terminated surfaces. Measurements of water contact angle and zeta potentials reveal that sulfated GAG?modified surfaces are more wettable and possess a negative surface potential. Additionally, higher thiolated GAGs (tGAGs) exhibit increased wettability and higher surface roughness. Fibronectin (FN) adsorption increases with sulfation degree of tGAGs. The tGAG?functionalized surfaces with higher degree of sulfation promote fibroblast adhesion most under serum‐free conditions. The preadsorption of FN allows for more cell adhesion on tGAG surfaces. Metabolic activity measurements show that cell growth is enhanced for tGAGs up to a certain thiolation degree. Overall, thiolation of GAGs does not hamper their bioactivity toward proteins and cells, which make them highly interesting for biomimetic surface modification of implants and tissue engineering scaffolds.  相似文献   

9.
The complex sulfation motifs of heparan sulfate glycosaminoglycans (HS GAGs) play critical roles in many important biological processes. However, an understanding of their specific functions has been hampered by an inability to synthesize large numbers of diverse, yet defined, HS structures. Herein, we describe a new approach to access the four core disaccharides required for HS/heparin oligosaccharide assembly from natural polysaccharides. The use of disaccharides rather than monosaccharides as minimal precursors greatly accelerates the synthesis of HS GAGs, providing key disaccharide and tetrasaccharide intermediates in about half the number of steps compared to traditional strategies. Rapid access to such versatile intermediates will enable the generation of comprehensive libraries of sulfated oligosaccharides for unlocking the “sulfation code” and understanding the roles of specific GAG structures in physiology and disease.  相似文献   

10.
Electron detachment dissociation (EDD) Fourier transform mass spectrometry has recently been shown to be a powerful tool for examining the structural features of sulfated glycosaminoglycans (GAGs). The characteristics of GAG fragmentation by EDD include abundant cross-ring fragmentation primarily on hexuronic acid residues, cleavage of all glycosidic bonds, and the formation of even- and odd-electron product ions. GAG dissociation by EDD has been proposed to occur through the formation of an excited species that can undergo direct decomposition or ejects an electron and then undergoes dissociation. In this work, we perform electron-induced dissociation (EID) on singly charged GAGs to identify products that form via direct decomposition by eliminating the pathway of electron detachment. EID of GAG tetrasaccharides produces cleavage of all glycosidic bonds and abundant cross-ring fragmentation primarily on hexuronic acid residues, producing fragmentation similar to EDD of the same molecules, but distinctly different from the products of infrared multiphoton dissociation or collisionally activated decomposition. These results suggest that observed abundant fragmentation of hexuronic acid residues occurs as a result of their increased lability when they undergo electronic excitation. EID fragmentation of GAG tetrasaccharides results in both even- and odd-electron products. EID of heparan sulfate tetrasaccharide epimers produces identical fragmentation, in contrast to EDD, in which the epimers can be distinguished by their fragment ions. These data suggest that for EDD, electron detachment plays a significant role in distinguishing glucuronic acid from iduronic acid.  相似文献   

11.
This work describes improved workup and instrumental conditions to enable robust, sensitive glycosaminoglycan (GAG) disaccharide analysis from complex biological samples. In the process of applying CE with LIF to GAG disaccharide analysis in biological samples, we have made improvements to existing methods. These include (i) optimization of reductive amination conditions, (ii) improvement in sensitivity through the use of a cellulose cleanup procedure for the derivatization, and (iii) optimization of separation conditions for robustness and reproducibility. The improved method enables analysis of disaccharide quantities as low as 1 pmol prior to derivatization. Biological GAG samples were exhaustively digested using lyase enzymes, the disaccharide products and standards were derivatized with the fluorophore 2‐aminoacridone and subjected to reversed polarity CE‐LIF detection. These conditions resolved all known chondroitin sulfate (CS) disaccharides or 11 of 12 standard heparin/heparan sulfate disaccharides, using 50 mM phosphate buffer, pH 3.5, and reversed polarity at 30 kV with 0.3 psi pressure. Relative standard deviation in migration times of CS ranged from 0.1 to 2.0% over 60 days, and the relative standard deviations of peak areas were less than 3.2%, suggesting that the method is reproducible and precise. The CS disaccharide compositions are similar to those obtained by our group using tandem MS. The reversed polarity CE‐LIF disaccharide analysis protocol yields baseline resolution and quantification of heparin/heparan sulfate and CS/dermatan sulfate disaccharides from both standard preparations and biologically relevant proteoglycan samples. The improved CE‐LIF method enables disaccharide quantification of biologically relevant proteoglycans from small samples of intact tissue.  相似文献   

12.
Electron transfer through gas phase ion-ion reactions has led to the widespread application of electron- based techniques once only capable in ion trapping mass spectrometers. Although any mass analyzer can in theory be coupled to an ion-ion reaction device (typically a 3-D ion trap), some systems of interest exceed the capabilities of most mass spectrometers. This case is particularly true in the structural characterization of glycosaminoglycan (GAG) oligosaccharides. To adequately characterize highly sulfated GAGs or oligosaccharides above the tetrasaccharide level, a high resolution mass analyzer is required. To extend previous efforts on an ion trap mass spectrometer, negative electron transfer dissociation coupled with a Fourier transform ion cyclotron resonance mass spectrometer has been applied to increasingly sulfated heparan sulfate and heparin tetrasaccharides as well as a dermatan sulfate octasaccharide. Results similar to those obtained by electron detachment dissociation are observed.  相似文献   

13.
Glycosaminoglycans (GAGs) are widely distributed in animal tissues where they are usually associated with proteins. Six types are commonly recognized: heparin (Hep), heparan sulfate (HS), dermatan sulfate (DS), chondroitin sulfate (Ch-S), keratan sulfate (KS) and hyaluronic acid (Hyal). They are structurally related with a carbohydrate backbone consisting of alternating hexuronic acid (L-iduronic acid and/or D-glucuronic acid) or galactose units and hexosamine (D-glucosamine or D-galactosamine) residues. All GAGs, except Hyal, show sulfate groups along their chains. Certain sulfate glycoaminoglycans have the ability to interfere with blood coagulation, as demonstrated by the extensive clinical use of Hep as an anticoagulant agent. HS and DS show a good anticoagulant activity, although weaker than that of Hep. In contrast, Ch-S has a low ability to inhibit plasma serine proteases, and KS and Hyal are devoid of any effect on coagulation cascade. The interaction between blood coagulation serine proteases and GAGs can be found to have two principle mechanisms: the specific “lock and key” binding and the nonspecific cooperative electrostatic association. This different ability of GAGs to interact with coagulation cascade proteins depends on the molecular weight, the ratio of iduronic/glucoronic acid and the sulfation degree. Many attempts have been made to improve or induce anticoagulant activity of natural GAGs-by chemical modification. Increasing sulfation degree of DS and Ch-S is followed by their biological activity increasing. Hyal, which is devoid of any anticoagulant effect, acquires a good ability to inactivate plasma serine proteases, i.e. thrombin and Factor Xa, when it is sulfated. This ability increases by increasing the number of sulfate groups per disaccharide unit, although the mechanism of action is different from that of Hep, but seems to be independent of its molecular weight.  相似文献   

14.
15.
Glycosaminoglycans (GAGs) are functionally important molecules of the arterial wall and play a crucial role in atherogenesis. Chondroitin sulfate/dermatan sulfate proteoglycans (CS/DSPGs) participate in several biological events through their GAG chains, and are also involved in the development of atherosclerosis. The aim of this study was to compare the pre- and post-operative levels of CS in serum of patients after coronary artery bypass graft surgery using a highly sensitive reversed-polarity capillary electrophoresis method and to investigate the correlation of CS with common biochemical lipid markers. It was found that CS values were significantly higher for all patients post-operatively and, furthermore, CS levels were statistically correlated to apolipoprotein A and B levels. Notably, the pre-operational lipid profile of the patient may be indicative of the values of 4-sulfated CS post-operationally. Furthermore, the obtained results highlight the clinical significance of CS levels in serum, since they may provide complementary information for the latent inflammatory state of the patient.  相似文献   

16.
Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell-signaling by binding specific proteins. Structural data on protein–GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG–protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG-specific docking tools compared to protein–protein or protein–drug docking approaches. We present for the first time an automated fragment-based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full-ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems. © 2019 Wiley Periodicals, Inc.  相似文献   

17.
Fibroblast growth factor‐2 (FGF‐2) is involved in wound healing and embryonic development. Glycosaminoglycans (GAGs), the major components of the extracellular matrix (ECM), play fundamental roles at this level. FGF‐GAG noncovalent interactions are in the focus of research, due to their influence upon cell proliferation and tissue regeneration. Lately, high resolution mass spectrometry (MS) coupled with chip‐nanoelectrospray (nanoESI) contributed a significant progress in glycosaminoglycomics by discoveries related to novel species and their characterization. We have employed a fully automated chip‐nanoESI coupled to a quadrupole time‐of‐flight (QTOF) MS for assessing FGF‐GAG noncovalent complexes. For the first time, a CS disaccharide was involved in a binding assay with FGF‐2. The experiments were conducted in 10 mM ammonium acetate/formic acid, pH 6.8, by incubating FGF‐2 and CS in buffer. The detected complexes were characterized by top‐down in tandem MS (MS/MS) using collision induced‐dissociation (CID). CID MS/MS provided data showing for the first time that the binding process occurs via the sulfate group located at C4 in GalNAc. This study has demonstrated that chip‐MS may generate reliable data upon the formation of GAG‐protein complexes and their structure. Biologically, the findings are relevant for studies focused on the identification of the active domains in longer GAG chains.  相似文献   

18.
Electron detachment dissociation (EDD) Fourier transform mass spectrometry has recently been shown to be a useful method for tandem mass spectrometry analysis of sulfated glycosaminoglycans (GAGs). EDD produces abundant glycosidic and cross-ring fragmentations that are useful for localizing sites of sulfation in GAG oligosaccharides. Although EDD fragmentation can be used to characterize GAGs in a single tandem mass spectrometry experiment, SO3 loss accompanies many peaks and complicates the resulting mass spectra. In this work we demonstrate the ability to significantly decrease SO3 loss by selection of the proper ionized state of GAG precursor ions. When the degree of ionization is greater than the number of sulfate groups in an oligosaccharide, a significant reduction in SO3 loss is observed in the EDD mass spectra. These data suggested that SO3 loss is reduced when an electron is detached from carboxylate groups instead of sulfate. Electron detachment occurs preferentially from carboxylate versus sulfate for thermodynamic reasons, provided that carboxylate is in its ionized state. Ionization of the carboxylate group is achieved by selecting the appropriate precursor ion charge state, or by the replacement of protons with sodium cations. Increasing the ionization state by sodium cation addition decreases, but does not eliminate, SO3 loss from infrared multiphoton dissociation of the same GAG precursor ions.  相似文献   

19.
The structure of an intact glycosaminoglycan (GAG) chain of the bikunin proteoglycan (PG) was analyzed using a combined top-down and bottom-up sequencing strategy. PGs are proteins with one or more linear, high-molecular weight, sulfated GAG polysaccharides O-linked to serine or threonine residues. GAGs are often responsible for the biological functions of PGs, and subtle variations in the GAG structure have pronounced physiological effects. Bikunin is a serine protease inhibitor found in human amniotic fluid, plasma, and urine. Bikunin is posttranslationally modified with a chondroitin sulfate (CS) chain, O-linked to a serine residue of the core protein. Recent studies have shown that the CS chain of bikunin plays an important role in the physiological and pathological functions of this PG. While no PG or GAG has yet been sequenced, bikunin, the least complex PG, offers a compelling target. Electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry (ESI FTICR-MS) permitted the identification of several major components in the GAG mixture having molecular masses in a range of 5505-7102 Da. This is the first report of a mass spectrum of an intact GAG component of a PG. FTICR-MS analysis of a size-uniform fraction of bikunin GAG mixture obtained by preparative polyacrylamide gel electrophoresis, allowed the determination of chain length and number of sulfo groups in the intact GAGs.  相似文献   

20.
Interaction of basic fibroblast growth factor (bFGF) with heparin/heparan sulfate proteoglycans protects the growth factor against proteolytic degradation and is essential for its cellular activity. Although the structural requirements of heparin and heparan sulfate for the high-affinity binding to bFGF have been extensively examined, studies on intact heparin proteoglycans are limited. In this report, the purity and the binding ability of a heparin proteoglycan-like molecule-the heparin-bovine serum albumin (heparin-BSA) conjugate-was examined using capillary zone electrophoresis (CZE). Furthermore, the affinity of bFGF binding to the heparin-BSA conjugate was studied using an enzyme solid-phase assay. Chondroitin sulfate, dermatan sulfate, hyaluronan, heparan sulfate and variously sulfated disaccharides derived from heparin and heparan sulfate were also studied for their ability to compete with the binding of bFGF to heparin. Heparin-BSA conjugate was synthesized by reductive amination and, following precipitation with 1.5 vols of ethanol-sodium acetate, it was obtained free of contaminating heparin. Heparin-BSA-bFGF conjugate was obtained following incubation of heparin-BSA with bFGF for 2 h at 37 degrees C. Intact heparin, heparin-BSA and heparin-BSA-bFGF conjugates were completely resolved by CZE using 50 mM phosphate, pH 3.5, as operating buffer, reversed polarity (30 kV) and detection at 232 nm. Competitive solid phase assay showed that, among the glycosaminoglycans tested, heparin exhibits the highest affinity binding to bFGF (IC(50) = 6.4 nM). Heparan sulfate showed a lower affinity as compared with that of heparin, whereas all other glycosaminoglycans and heparin/heparan sulfate-derived disaccharides tested showed minute effects. The developed CZE method is rapid and accurate and can be easily used to identify bFGF-interacting heparin preparations of biopharmaceutical importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号